publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities
    Yatin Dandi ,  Luca Pesce ,  Hugo Cui , and 3 more authors
    2024
  2. On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds
    Matteo Vilucchio ,  Nikolaos Tsilivis ,  Bruno Loureiro , and 1 more author
    2024
  3. A theoretical perspective on mode collapse in variational inference
    Roman Soletskyi ,  Marylou Gabrié ,  and  Bruno Loureiro
    2024
  4. ICML
    Online Learning and Information Exponents: The Importance of Batch size & Time/Complexity Tradeoffs
    Luca Arnaboldi ,  Yatin Dandi ,  Florent Krzakala , and 3 more authors
    In Proceedings of the 41st International Conference on Machine Learning , 21–27 jul 2024
  5. Dimension-free deterministic equivalents for random feature regression
    Leonardo Defilippis ,  Bruno Loureiro ,  and  Theodor Misiakiewicz
    21–27 jul 2024
  6. Fundamental limits of weak learnability in high-dimensional multi-index models
    Emanuele Troiani ,  Yatin Dandi ,  Leonardo Defilippis , and 3 more authors
    21–27 jul 2024
  7. UAI
    Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression
    Lucas Clarté ,  Adrien Vandenbroucque ,  Guillaume Dalle , and 3 more authors
    In Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence , 15–19 jul 2024
  8. ICML
    Asymptotics of Learning with Deep Structured (Random) Features
    Dominik Schröder ,  Daniil Dmitriev ,  Hugo Cui , and 1 more author
    In Proceedings of the 41st International Conference on Machine Learning , 21–27 jul 2024
  9. A High Dimensional Model for Adversarial Training: Geometry and Trade-Offs
    Kasimir Tanner ,  Matteo Vilucchio ,  Bruno Loureiro , and 1 more author
    21–27 jul 2024
  10. ICML
    Asymptotics of feature learning in two-layer networks after one gradient-step
    Hugo Cui ,  Luca Pesce ,  Yatin Dandi , and 4 more authors
    In Proceedings of the 41st International Conference on Machine Learning , 21–27 jul 2024
  11. PRE
    Gaussian universality of perceptrons with random labels
    Federica Gerace ,  Florent Krzakala ,  Bruno Loureiro , and 2 more authors
    Phys. Rev. E, Mar 2024

2023

  1. High-dimensional robust regression under heavy-tailed data: Asymptotics and Universality
    Urte Adomaityte ,  Leonardo Defilippis ,  Bruno Loureiro , and 1 more author
    Mar 2023
  2. Escaping mediocrity: how two-layer networks learn hard single-index models with SGD
    Luca Arnaboldi ,  Florent Krzakala ,  Bruno Loureiro , and 1 more author
    Mar 2023
  3. Learning Two-Layer Neural Networks, One (Giant) Step at a Time
    Yatin Dandi ,  Florent Krzakala ,  Bruno Loureiro , and 2 more authors
    Mar 2023
  4. UAI
    Expectation consistency for calibration of neural networks
    Lucas Clarté ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence , 31 jul–04 aug 2023
  5. COLT
    From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
    Luca Arnaboldi ,  Ludovic Stephan ,  Florent Krzakala , and 1 more author
    In Proceedings of Thirty Sixth Conference on Learning Theory , 12–15 jul 2023
  6. NeurIPS
    Universality laws for Gaussian mixtures in generalized linear models
    Yatin Dandi ,  Ludovic Stephan ,  Florent Krzakala , and 2 more authors
    In Advances in Neural Information Processing Systems , 12–15 jul 2023
  7. ICML
    Are Gaussian Data All You Need? The Extents and Limits of Universality in High-Dimensional Generalized Linear Estimation
    Luca Pesce ,  Florent Krzakala ,  Bruno Loureiro , and 1 more author
    In Proceedings of the 40th International Conference on Machine Learning , 23–29 jul 2023
  8. ICML
    Deterministic equivalent and error universality of deep random features learning
    Dominik Schröder ,  Hugo Cui ,  Daniil Dmitriev , and 1 more author
    In Proceedings of the 40th International Conference on Machine Learning , 23–29 jul 2023
  9. AISTATS
    On double-descent in uncertainty quantification in overparametrized models
    Lucas Clarte ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    In Proceedings of The 26th International Conference on Artificial Intelligence and Statistics , 25–27 apr 2023
  10. MLST
    Learning curves for the multi-class teacher–student perceptron
    Elisabetta Cornacchia ,  Francesca Mignacco ,  Rodrigo Veiga , and 3 more authors
    Machine Learning: Science and Technology, Feb 2023
  11. MLST
    Theoretical characterization of uncertainty in high-dimensional linear classification
    Lucas Clarté ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    Machine Learning: Science and Technology, Jun 2023
  12. MLST
    Error scaling laws for kernel classification under source and capacity conditions
    Hugo Cui ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    Machine Learning: Science and Technology, Aug 2023
  13. IEEE TIT
    Bayesian Inference With Nonlinear Generative Models: Comments on Secure Learning
    Ali Bereyhi ,  Bruno Loureiro ,  Florent Krzakala , and 2 more authors
    IEEE Transactions on Information Theory, Dec 2023

2022

  1. NeurIPS
    Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap
    Luca Pesce ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    In Advances in Neural Information Processing Systems , Dec 2022
  2. NeurIPS
    Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
    Rodrigo Veiga ,  Ludovic Stephan ,  Bruno Loureiro , and 2 more authors
    In Advances in Neural Information Processing Systems , Dec 2022
  3. ICML
    Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics for Convex Losses in High-Dimension
    Bruno Loureiro ,  Cedric Gerbelot ,  Maria Refinetti , and 2 more authors
    In Proceedings of the 39th International Conference on Machine Learning , 17–23 jul 2022
  4. MSML
    The Gaussian equivalence of generative models for learning with shallow neural networks
    Sebastian Goldt ,  Bruno Loureiro ,  Galen Reeves , and 3 more authors
    In Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference , 16–19 aug 2022

2021

  1. NeurIPS
    Learning Gaussian Mixtures with Generalized Linear Models: Precise Asymptotics in High-dimensions
    Bruno Loureiro ,  Gabriele Sicuro ,  Cedric Gerbelot , and 3 more authors
    In Advances in Neural Information Processing Systems , 16–19 aug 2021
  2. NeurIPS
    Generalization Error Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime
    Hugo Cui ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    In Advances in Neural Information Processing Systems , 16–19 aug 2021
  3. NeurIPS
    Learning curves of generic features maps for realistic datasets with a teacher-student model
    Bruno Loureiro ,  Cedric Gerbelot ,  Hugo Cui , and 4 more authors
    In Advances in Neural Information Processing Systems , 16–19 aug 2021
  4. IEEE-TIT
    The Spiked Matrix Model With Generative Priors
    Benjamin Aubin ,  Bruno Loureiro ,  Antoine Maillard , and 2 more authors
    IEEE Transactions on Information Theory, Feb 2021

2020

  1. NeurIPS
    Phase retrieval in high dimensions: Statistical and computational phase transitions
    Antoine Maillard ,  Bruno Loureiro ,  Florent Krzakala , and 1 more author
    In Advances in Neural Information Processing Systems , Feb 2020
  2. ICML
    Generalisation error in learning with random features and the hidden manifold model
    Federica Gerace ,  Bruno Loureiro ,  Florent Krzakala , and 2 more authors
    In Proceedings of the 37th International Conference on Machine Learning , 13–18 jul 2020
  3. MSML
    Exact asymptotics for phase retrieval and compressed sensing with random generative priors
    Benjamin Aubin ,  Bruno Loureiro ,  Antoine Baker , and 2 more authors
    In Proceedings of The First Mathematical and Scientific Machine Learning Conference , 20–24 jul 2020

2018

  1. JHEP
    Coherence effects in disordered geometries with a field-theory dual
    Tomás Andrade ,  Antonio M. García-García ,  and  Bruno Loureiro
    Journal of High Energy Physics, Mar 2018
  2. PRL
    Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model
    Antonio M. Garcı́a-Garcı́a ,  Bruno Loureiro ,  Aurelio Romero-Bermúdez , and 1 more author
    Phys. Rev. Lett., Jun 2018

2016

  1. PRD
    Transport in a gravity dual with a varying gravitational coupling constant
    Antonio M. Garcı́a-Garcı́a ,  Bruno Loureiro ,  and  Aurelio Romero-Bermúdez
    Phys. Rev. D, Oct 2016
  2. PRD
    Marginal and irrelevant disorder in Einstein-Maxwell backgrounds
    Antonio M. Garcı́a-Garcı́a ,  and  Bruno Loureiro
    Phys. Rev. D, Mar 2016