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Assuming that  and introducing a scaling:a0,i = O(1)

f(x; Θ) = α(p)
p

∑
i=1

aiσ(w⊤
i x)

It can be shown that for : p ≫ 1

𝔼[κ(Θ0)] ≲
1
p

+
1

pα(p)

[Chizat, Oyallon & Bach ’19]

Which means  if  as  f(x; Θ) ≈ f̄lin(x; Θ0) pα(p) → ∞ p → ∞

Recall from last lecture…

a.k.a. “lazy” regime



Teacher-student setup

Hypothesis: f(x; Θ) =
1
p

p

∑
i=1

aiσ(w⊤
i x)

f(x; Θ) = a⊤σ(Wx)

x ∈ ℝd



Teacher-student setup

Data:   generated as:(xν, yν)ν∈[n] ∈ ℝd × 𝒴

yν =
1
k

k

∑
r=1

a⋆,rσ(w⊤
⋆xν) + Δzν

f(x; Θ) = a⊤σ(Wx)

x ∈ ℝd

xν ∼ 𝒩(0,Id)

f(x; Θ⋆) = a⊤
⋆σ⋆(W⋆x))

zν ∼ 𝒩(0,1)

Hypothesis: f(x; Θ) =
1
p

p

∑
i=1

aiσ(w⊤
i x)

Teacher Student



Algorithm: SGD
Algorithm: Let  be mini-batch.bk ⊂ [n]

Θk+1 = Θk − γk ∇Θkℛ̂bk (Θk) ℛ̂b(Θ) =
1

2 |b | ∑
ν∈b

(yν − f(xν; Θ))2

mini-batch
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 at fixed :γ → 0+ d, p

·Θ(t) = − ∇Θℛ̂n (Θ(t))
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Algorithm: Let  be mini-batch.bk ⊂ [n]

Θk+1 = Θk − γk ∇Θkℛ̂bk (Θk)

Gradient descent (GD) One-pass SGD

bk = [n], ∀k  independentbk
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Algorithm: Let  be mini-batch.bk ⊂ [n]

Θk+1 = Θk − γk ∇Θkℛ̂bk (Θk)

Gradient descent (GD) One-pass SGD

bk = [n], ∀k  independentbk
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Algorithm: SGD
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Algorithm: Let  be mini-batch.bk ⊂ [n]

Θk+1 = Θk − γk ∇Θkℛ̂bk (Θk) ℛ̂b(Θ) =
1

2 |b | ∑
ν∈b

(yν − f(xν; Θ))2

mini-batch

Gradient descent (GD) One-pass SGD

bk = [n], ∀k  independentbk

 at fixed :γ → 0+ d, p

·Θ(t) = − ∇Θℛ̂n (Θ(t)) ·Θ(t) = − ∇Θℛ (Θ(t))
 at fixed :γ → 0+ d, p

Algorithm: SGD



Another look at SGD

Θk+1 = Θk − γk ∇Θkℛ (Θk) + γkεk

Rewrite SGD:

Where:

εk = ∇Θk[ℛ (Θk) − ℛ̂Bk (Θk)]

Effective  
Noise

GD on population



Another look at SGD

Θk+1 = Θk − γk ∇Θkℛ (Θk) + γkεk

Rewrite SGD:

Where:

εk = ∇Θk[ℛ (Θk) − ℛ̂Bk (Θk)]

Question: How to characterise this?

Effective  
Noise

GD on population



Summary of setting

Architecture: f(x; Θ) =
1
p

p

∑
i=1

aiσ(wi ⋅ x)

Data model: yν =
1
k

k

∑
r=1

a⋆
r σ(w⋆

r ⋅ xν) + Δzν xν ∼ 𝒩(0,Id)
zν ∼ 𝒩(0,1)

One-pass SGD for two-layer neural networks in the teacher-student setting.

Algorithm: Θν+1 = Θν − γν ∇Θν(yν − f(xν; Θν))2



Sufficient statistics

Goal: track population error exactly throughout the dynamics

ℛ(Θν) =
1
2

𝔼x∼𝒩(0,Id) ( 1
k

k

∑
r=1

a⋆,rσ(w*r
⊤x) −

1
p

p

∑
i=1

aν
i σ(wν

i
⊤x))

2

+
Δ
2



Goal: track population error exactly throughout the dynamics

Where:

Ων =
1
d (

W⋆W⊤
⋆ W⋆Wν⊤

WνW⊤
⋆ WνWν⊤) = ( P Mν

Mν⊤ Qν) ∈ ℝ(k+p)×(k+p)

Sufficient statistics

ℛ(Θν) =
1
2

𝔼(λ⋆
ν,λν)∼𝒩(0,Ων) ( 1

k

k

∑
r=1

a⋆,rσ(λν
⋆,r) −

1
p

p

∑
i=1

aν
i σ(λν

i ))
2

+
Δ
2



Goal: track population error exactly throughout the dynamics

Where:

Key idea:

Ων+1 = ψ(Ων)One-pass  
SGD

Sufficient statistics

ℛ(Θν) =
1
2

𝔼(λ⋆
ν,λν)∼𝒩(0,Ων) ( 1

k

k

∑
r=1

a⋆,rσ(λν
⋆,r) −

1
p

p

∑
i=1

aν
i σ(λν

i ))
2

+
Δ
2

Ων =
1
d (

W⋆W⊤
⋆ W⋆Wν⊤

WνW⊤
⋆ WνWν⊤) = ( P Mν

Mν⊤ Qν) ∈ ℝ(k+p)×(k+p)



Starting point: one-pass SGD

Tracking overlaps
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2
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Starting point: one-pass SGD

Tracking overlaps
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2
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Starting point: one-pass SGD

Tracking overlaps

Θν+1 = Θν −
γν

2
∇Θν(yν − f(xν; Θν))2

= Θν + γν(yν − f(xν; Θν))∇Θν f(xν; Θν)
= Θν + γνℰν ∇Θν f(xν; Θν)

But:

∇ai
f(x; Θ) =

1
p

σ(w⊤
i x)

∇wi
f(x; Θ) =

1
p

aiσ′ (w⊤
i x)x



Starting point: one-pass SGD

Tracking overlaps

aν+1
i = aν

i +
γν

p
ℰνσ(wν

i
⊤xν)

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (wν

i
⊤xν)xν
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Goal: Go from this to equation for  Ων



Starting point: one-pass SGD

Tracking overlaps

aν+1
i = aν

i +
γν

p
ℰνσ(wν

i
⊤xν)

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (wν

i
⊤xν)xν

Goal: Go from this to equation for  Ων

ℰν = (yν − f(xν; Θν))

= ( 1
k

k

∑
r=1

a⋆,rσ⋆(w⊤
⋆,rxν) − Δzν −

1
p

p

∑
i=1

aν
i σ(wν

i
⊤xν))



Starting point: one-pass SGD

Tracking overlaps

aν+1
i = aν

i +
γν

p
ℰνσ(λν

i )

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

ℰν = (yν − f(xν; Θν))

= ( 1
k

k

∑
r=1

a⋆,rσ⋆(λ⋆,r) − Δzν −
1
p

p

∑
i=1

aν
i σ(λν

i ))

Goal: Go from this to equation for  Ων



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

w⊤
⋆,rwν+1

i = w⊤
⋆,rwν

i +
γν

p
ℰνaiσ′ (λν

i )w⊤
⋆,rxν



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

1
d

w⊤
⋆,rwν+1

i =
1
d

w⊤
⋆,rwν

i +
γν

dp
ℰνaiσ′ (λν

i )w⊤
⋆,rxν



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

Mν+1
ri = Mν

ri +
γν

dp
ℰνaiσ′ (λν

i )λν
⋆,r



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

Mν+1
ri = Mν

ri +
γν

dp
ℰνaiσ′ (λν

i )λν
⋆,r

Equation for :Qν =
1
d

WνWν⊤

wν+1
j

⊤wν+1
i = wν+1

j
⊤ (wν

i +
γν

p
ℰνaiσ′ (λν

i )xν)



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

Mν+1
ri = Mν

ri +
γν

dp
ℰνaiσ′ (λν

i )λν
⋆,r

Equation for :Qν =
1
d

WνWν⊤

wν+1
j

⊤wν+1
i = wν+1

j
⊤ (wν

i +
γν

p
ℰνaiσ′ (λν

i )xν)
= (wν

i +
γν

p
ℰνaiσ′ (λν

i )xν) (wν
i +

γν

p
ℰνaiσ′ (λν

i )xν)



Tracking overlaps

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Equation for :Mν =
1
d

W⋆Wν⊤

Mν+1
ri = Mν

ri +
γν

dp
ℰνaiσ′ (λν

i )λν
⋆,r

Equation for :Qν =
1
d

WνWν⊤

Qν+1
ji = Qν

ji +
γν

dp (ℰνσ′ (λν
j )λν

i + ℰνσ′ (λν
i )λν

j )
+

γ2
ν

dp2
(ℰν)2σ′ (λν

i )σ′ (λν
j ) | |xν | |2

2



Tracking overlaps: summary

wν+1
i = wν

i +
γν

p
ℰνaiσ′ (λν

i )xν

Mν+1
ri − Mν

ri =
γν

dp
Ψ(GF)

M (M, Q)

Qν+1
ji − Qν

ji =
γν

dp
Ψ(GF)

Q (M, Q) +
γ2

ν

dp2
Ψ(var)

Q (M, Q)

Stochastic process 
in ℝp×d

Stochastic process 
in ℝp(p+k)



Concentration result

Define step-size  and  such that:δt =
γ

dp
M(t), Q(t)

M(νδt) = Mν Q(νδt) = Qν



Define step-size  and  such that:δt =
γ

dp
M(t), Q(t)

M(νδt) = Mν Q(νδt) = Qν

Theorem [Veiga, Stephan, Loureiro, Krzakala, Zdeborová ’22]

Then  :∀0 ≤ ν ≤ ⌊ n
δt ⌋

𝔼 | |Ων − Ω̄(νδt) | |∞ ≤ eCνδt γ
dp

Where  is the solution of an ODE:Ω̄(t) = 𝔼[Ω(t)]

dΩ̄(t)
dt

= 𝔼 [ψ(Ω̄(t))]

Concentration result



The different limiting regimes



The different limiting regimes



Classical regime

Θν+1 = Θν −
γν

2
∇Θν(yν − f(xν; Θν))2

·Θ(t) = −
1
2

∇Θ𝔼(x,y) [(y − f(x; Θ(t)))2]

γ → 0+

[Robins & Monro ’51]



Classical regime

Θν+1 = Θν −
γν

2
∇Θν(yν − f(xν; Θν))2

·Θ(t) = −
1
2

∇Θ𝔼(x,y) [(y − f(x; Θ(t)))2]

γ → 0+

[Robins & Monro ’51]

Θk+1 = Θk − γk ∇Θkℛ (Θk) + γkεk

Effective  
Noise

GD on population

Subleading in γ



Classical regime

Θν+1 = Θν −
γν

2
∇Θν(yν − f(xν; Θν))2

·Θ(t) = −
1
2

∇Θ𝔼(x,y) [(y − f(x; Θ(t)))2]

γ → 0+

[Robins & Monro ’51]

·Mri(t) = 𝔼[Ψ(GF)
M (M̄, Q̄)]

·̄
Qji(t) = 𝔼[Ψ(GF)

Q (M̄, Q̄)]



Classical regime

10°2 10°1 100 101 102 103 104 105

t

10°6

10°5

10°4

10°3

10°2
R

°
¢ 2

ODE

d = 5

d = 10

d = 50



Classical regime



The different limiting regimes



High-dimensional regime

100 101 102 103 104

C = a
3

10�4

10�3

10�2

10�1

R

3 = 30
3 = 100
3 = 300
3 = 1000

ℛ
−

Δ
/2

[Saad & Solla ’95]

·̄
Mri(t) = 𝔼[Ψ(GF)

M (M̄, Q̄)]
·̄
Qji(t) = 𝔼[Ψ(GF)

Q (M̄, Q̄)] +
γ
p

𝔼 [Ψvar
Q (M̄, Q̄)]



High-dimensional regime

100 101 102 103 104

C = a
3

10�4

10�3

10�2

10�1

R

3 = 30
3 = 100
3 = 300
3 = 1000

Unspecialised plateau

Specialised plateau

ℛ
−

Δ
/2

ℛ∞ − Δ/2 ∝ γΔ

[Saad & Solla ’95]



The different limiting regimes



Mean-field regime

10°2 10°1 100 101 102 103

t

10°5

10°4

10°3

10°2

10°1

R
°

¢ 2

p = 100

ODE

p = 1000

ODE

·Mri(t) = 𝔼[Ψ(GF)
M (M̄, Q̄)]

·̄
Qji(t) = 𝔼[Ψ(GF)

Q (M̄, Q̄)]



Mean-field limit



Mean-field limit
Define empirical density of weights:Idea: 

 ρν
p(a, w) =

1
p

p

∑
i=1

δ(ai − aν
i )δ(wi − wν

i )



Mean-field limit
Define empirical density of weights:Idea: 

 ρν
p(a, w) =

1
p

p

∑
i=1

δ(ai − aν
i )δ(wi − wν

i )

 ℛ(Θ) = 𝔼 (y − ∫ ̂ρp(da, dw)aσ(w ⋅ x))
2

The risk is linear in !̂ρp



Mean-field limit
Define empirical density of weights:Idea: 

 ℛ(Θ) = 𝔼 (y − ∫ ̂ρp(da, dw)aσ(w ⋅ x))
2

The risk is linear in !̂ρp

Show that, at fixed  and :d γk ≪ 1/d

∂tρt = γ∇θ(ρt ∇θℓ(θ; ρt))
p → ∞One-pass  

SGD

“Mean-field” limit

[Mei, Montanari, Nguyen 18’; Chizat, Bach 18’; Rotskoff, 
Vanden-Eijnden 18’; Sirignano, Spiliopoulos 18’]

 ρν
p(a, w) =

1
p

p

∑
i=1

δ(ai − aν
i )δ(wi − wν

i )



Global convergence
From [Chizat, Bach 21’, arXiv: 2110.08084]

[Mei, Montanari, Nguyen 18’; Chizat, Bach 18’; Rotskoff, 
Vanden-Eijnden 18’; Sirignano, Spiliopoulos 18’]



Mean-field regime

W ∈ ℝp×d

But  !!!Q ∈ ℝp×p



W = MP−1W⋆ + W⊥

Teacher 
subspace

W⋆ ∈ ℝk×d

W ∈ ℝp×d

Mean-field regime

But  !!!Q ∈ ℝp×p



W = MP−1W⋆ + W⊥

Teacher 
subspace

Q ≈ MPM⊤ + D q⊥ΞD q⊥

𝕊d−k−1

∼

W⋆ ∈ ℝk×d

W ∈ ℝp×d

11/14

Mean-field regime

But  !!!Q ∈ ℝp×p



Mean-field + high-d

Theorem [Arnaboldi, Stephan, Loureiro, Krzakala ’23]

𝔼 | |Q(t) − MP−1M⊤ + diag(Q⊥) | |∞ ≤ eCt (p−1/2 + d−1/2)

W ∈ ℝp×d

Suppressed in  1/ d

W⋆ ∈ ℝk×d



Mean-field + high-d

𝔼 | |Q(t) − MP−1M⊤ + diag(Q⊥) | |∞ ≤ eCt (p−1/2 + d−1/2)

This implies MF-like PDE for the sufficient statistics:

̂μt(m, q) =
1
p

p

∑
i=1

δ(m − mi(t))δ(q − Q⊥
ii (t))

∂t ̂μp(m, q) = ∇(m,q) ⋅ ( ̂μtφ( ⋅ , ̂μt))

Theorem [Arnaboldi, Stephan, Loureiro, Krzakala ’23]



Mean-field and high-d



What can I do with that?

a

f(x; Θ) =
1
p

a⊤σ(Wx))

x ∈ ℝd

θ⋆
y = σ⋆(w⊤

⋆x)

W

From [Berthier, Montanari 
& Zhou ’23]

Consider simple case:    and k = 1 p → ∞



What can I do with that?
Consider simple case:    and k = 1 p → ∞

a

f(x; Θ) =
1
p

a⊤σ(Wx))

x ∈ ℝd

θ⋆
y = σ⋆(w⊤

⋆x)

W

From [Berthier, Montanari 
& Zhou ’23]

Recall:  For  and n ∝ d x ∼ 𝒩(0,Id)

RF / Kernels: can only learn linear part

NNs: can learn non-linear components 
if  “standard”  

(full Hermite expansion).
(σ⋆, σ)
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Follow-ups and challenges

Characterisation of the stochastic dynamics  
close to fixed points as a coloured diffusion 

[Ben Arous, Gheissari, 
Jagannath NeurIPS ’22]

Uniform control over the variance 
and convergence rates 

Phenomenology of the dynamics: 
Functions of increasing complexity? 

Distributions of increasing complexity?

[Abbe, Adsera, Misiakiewicz, 
COLT ’22; Berthier, Montanari ’23]

Role of initialisation

[Refinetti, Ingrosso, Goldt, 
arXiv ’22]
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Lecture III: Summary

Deterministic analysis of two-layer neural nets 
 in the “rich” regime

Dimension free limits in the mean-field regime

Interplay between effective SGD noise  
and overparametrisation

Phenomenology in the classical  
and high-dimensional regime



But this is only the tip of 
an iceberg… 

brloureiro@gmail.com 

Statistical physics  

of learning
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