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Two layer neural networks

IN the rich regime
SGD dynamics of two-layer NNs




Recall from last lecture...

Assuming that a;; = O(1) and introducing a scaling:
p
f(x:0) = a(p) Y ao(w;'x)
=1

It can be shown that for p > 1:  [Chizat, Oyallon & Bach 19]
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Which means f(x; ®) = f;: (x; ®,) if pa(p) > 0 as p -

a.k.a. “lazy” regime



Teacher-student setup

(x;0) = a'6(Wx)

Hypothesis:  f(x;0) =— ) ao(w, x)




Teacher-student setup
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Hypothesis: f(x;@)=; a,c(w;' x)
i=1

Data: (x",¥"),¢ € RYx % generated as:

y = — a*,,,a(wlx”) + \/Zz”

Student

®) = a'o(Wx)

x¥ ~ N0,
v ~ H(0,1)



Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.

A A 1 2
k+1 _ ok k _ v v.
0! = 0 -y Vg2, (0) %(@)—ml@(y fx; ©))



Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.

A - 1 2
k+1 _ ok k _ v v.
0! = 0 -y Vg2, (0) ‘%”(@)‘mmyeb(y fx*;0))

GCradient descent (GD)

< 7




Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.

A - 1 2
k+1 _ ok k _ v v.
0! = 0 -y Vg2, (0) %(@)—m'@(y fx*;0))

GCradient descent (GD)

< 7

y — 07 at fixed d, p:

Ot) = — Vo, (000))



Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.
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Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.
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Algorithm: SGD

Algorithm: Let b, C [n] be mini-batch.

A A 1
O = 0 — 1, Vo Ry, (0F) 0 === (v ~f(x":©))"
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Gradient descent (GD) One-pass SGD
b, =[n], Vk b, independent
k k
y — 0" at fixed d, p: y — 07 at fixed d, p:

O) = - V%, (00) | ©@1)=-VeZ (00)




Another look at SGD

Rewrite SGD:

Ot = 0 — 3 Ve Z (0F) + 16"
GD on population

Where;
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Another look at SGD

Rewrite SGD:

Ot = 0 — 3 Ve Z (0F) + 16"
GD on population

Where;

Va\

ek = Vo | % (0F) = %2, (©F)

\A';'; Question: How to characterise this?



Summary of setting

One-pass SGD for two-layer neural networks in the teacher-student setting.

P

Architecture: Jf(x;0) = ; Z CZ,U(W,- © X)
i=1

Data model: y*'=— ) aXo(w” -x") +1/AZ"
Y T 2,47 VA 2 ~ N(0.1)

r=1

Algorithm: Ot = @ — v, Ve (y" — f(x; ®y))2




Sufficlient statistics

Goal: track population error exactly throughout the dynamics

k 14
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1 1 1
K(O) = E[Exrv/l/ (0.Iy) <; Z d*’rﬁ(w;k Tx) - Z aiya(wiy-rx)>

r=1 p =1




Sufficlient statistics

Goal: track population error exactly throughout the dynamics

1
R(O") = E[E(A*”,/IV)N/V(O,QV)

Where:
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Sufficlient statistics

Goal: track population error exactly throughout the dynamics

1
R(O") = E[E(A*V,AV)N/V(O,QU)

Where:
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Q Key idea:
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Tracking overlaps

Starting point: one-pass SGD
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Starting point: one-pass SGD

1% 1% }/V 1% 1% 1%
et =0 —EV@U()’ — f(x*; @)

= 0" +y,(y" — f(x";0)) Vg, f(x"; B)
= @Y 4+ y,&" Vg, f(x*; O)



Tracking overlaps

Starting point: one-pass SGD

1% 1% }/V 1% 1% 1%
et =0 —EV@U()’ — f(x*; @)

= 0" +y,(y" — f(x";0)) Vg, f(x"; B)
= @Y 4+ y,&" Vg, f(x*; O)

But:

1
V. f(x;0) = —o(w, x)
l p

1
V, f(x;0) = —aia’(wiTx)x
| P
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Tracking overlaps

Starting point: one-pass SGD

Vv T
with = wh + 2 &%ac6'(w? x¥)x"
p

Goal: Go from this to equation for €2

& = (v - fla: 0")

k p
) <l 2 a*,i’g*(wl_,rxy) o \/ZZU - l 2 aiya(wiy_rxy))

k P i

r=1



Tracking overlaps

Starting point: one-pass SGD

i :
witl = w¥ + 2 &%a.6'(A1)x"
P

Goal: Go from this to equation for €2

& = (v - fla: 0")

k 4
— (% 2 a*,rg*(/l*,r) o \/KZU o l 2 azya(/ll'lj))

r=1 p =1
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Tracking overlaps

Wil = wt + g o (1)
p

1
Equation for MY = =W, W*";
d

| | Y
T v+1 T 7, v ), aY, T U
—W, W= —w, W+ —&"ac (/ll. )w*,rx

d d dp



Tracking overlaps

Wil = wt + g o (1)
p

1
Equation for MY = =W, W*";
d
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Tracking overlaps

Y
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Tracking overlaps

Y
witl = wt + = &%a,6'(A})x"
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Tracking overlaps

Y
witl = wt + = &%a,6'(A})x"

P
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Equation for M¥ = EW*WU :
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Tracking overlaps: summary

witl = w4 Tv v a;o'(A))x"
P

\4

MY — MY = ;—;‘P;?FKM, 0)

2
v+ _ v — Lv @GRy v gvany g

Stochastic process
in RP(PTK)



Concentration result

Define step-size ot = dL and M(t), O(t) such that:
P

M(vor) = M* O(vot) = Q*



Concentration result

Define step-size ot = . and M(z2), O(#) such that:

dp
M(vor) = M* O(vot) = Q*
Theorem [Veiga, Stephan, Loureiro, Krzakala, Zdeborova '22]
n
Then VO<v < |—|:
23

C ‘ ‘Qv_ Q(I/5t)| |OO < erét L
V dp

Where Q(f) = E[€(#)] is the solution of an ODE:

dQ)
dt

= [y (Q)]



The different limiting regimes

Mean field limit

p —> 0
v, d = 0(1)
Classical limit High-d limit
y — 0F d— o

d,p = 0(1) v,p = O(1)



The different limiting regimes

Mean field limit
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Classical regime @

Y, Classical limit
O = 0"~ = Ve - fx";0)° y - 0
2 d,p = O(1)
y = 07

v [Robins & Monro '51]
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Y, Classical limit
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Classical regime @

Y, Classical limit
O = 0"~ = Ve - fx";0)° y - 0
2 d,p = O(1)
y = 07

v [Robins & Monro '51]
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O =~ VeEq, |(y — f(x; ©(1)))?]

M, (1) = E[¥CP T, O)]

0,(1) = E[¥SP(1, 0))




Classical regime @J

Classical limit
y — 0"
d,p = 0(1)
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Classical regime @

Classical limit
O+
t=0.00 - ' r
| 5 d,p = 0(1)
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The different limiting regimes

Mean field limit

p —> 0
v,d = 0(1)
Classical limit High-d limit
y — 0F d— o

d,p = 0(1) v,p = O(1)



High-dimensional regime  isadssoiiass

High-d limit
d — oo

v,p = O(1)

107" 5
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M, (1) = E[¥{P (M, 0)]

i VYA / Var( A4 [
0,(0) = E¥G" (1, 0)] + E W51, 0)|




High-dimensional regime  ssdasolaes

107" 4
1074 N
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High-d limit &
d — oo | = Zigo Specialised plateau
Y, p = O(1) | v d=300
107%7 @ d=1000
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The different limiting regimes

Mean field limit

p —> 0
v,d = 0(1)
Classical limit High-d limit
y — 0F d— o

d,p = 0(1) v,p = O(1)



Mean-field regime
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p—> X0
v, d = O(1)
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Mean-field IImit

On the Global Convergence of Gradient Descent for
Over-parameterized Models using Optimal Transport

Lénaic Chizat Francis Bach
INRIA, ENS, PSL Research University INRIA, ENS, PSL Research University
Paris, France Paris, France
lenaic.chizat@inria.fr francis.bach@Qinria.fr

TRAINABILITY AND ACCURACY OF NEURAL NETWORKS:
AN INTERACTING PARTICLE SYSTEM APPROACH

GRANT M. ROTSKOFF AND ERIC VANDEN-EIJNDEN

Mean field analysis of neural networks: A central limit
theorem

Justin Sirignano*”, Konstantinos Spiliopoulos™’

A mean field view of the landscape of two-layer
neural networks

Song Mei®, Andrea Montanari®<', and Phan-Minh Nguyen®



Mean-field IImit
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Mean-field IImit

Q Idea: Define empirical density of weights:
1 P
pila.w) ==Y 8(a; — a)d(w; — w?)
P g
The risk is linearin p!
2
RO)=E <y — Jﬁp(da, dw)aoc(w - x)>

Show that, at fixed d and y, < 1/d.

p — &0

OnSeC_}%aSS - 0,0, =7Vy (Ptvgﬂ@? pt))

“Mean-field” Iimit

[Mel, Montanari, Nguyen 18"; Chizat, Bach 18’; Rotskoff,
Vanden-Eijnden 18’; Sirignano, Spiliopoulos 18°]



Global convergence

From [Chizat, Bach 2T, arXiv: 2110.08084]

Theorem 2 (Informal) If the support of the initial distribution includes all directions in R,
and if the function ¥V is positively 2-homogeneous then if the Wasserstein gradient flow weakly
converges to a distribution, it can only be to a global optimum of F'.

From qualitative to quantitative results? Our result states that for infinitely many parti-
cles, we can only converge to a global optimum (note that we cannot show that the flow always
converges). However, it is only a qualitative result in comparison with what is known for convex

optimization problems in Section |[2.2;

e This is only for m = +o00, and we cannot provide an estimation of the number of particles
needed to approximate the mean field regime that is not exponential in t (see such results
e.g. in |28]).

e We cannot provide an estimation of the performance as the function of time, that would
provide an upper bound on the running time complexity.

[Mel, Montanari, Nguyen 18’; Chizat, Bach 18’; Rotskoff,
Vanden-Eijnden 18’; Sirignano, Spiliopoulos 187]



Mean-field regime
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Mean-field regime

But Q € RP¥P 11
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Mean-field regime

But Q € RP*P 1!

_ —1yrx 1 ~ T =
W=MP W+ W > QNMPM +D\/FHD\/F
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Mean-field + high-d

Theorem [Arnaboldi, Stephan, Loureiro, Krzakala '23]

= ‘ ‘ O(f) — MP-IpmT 4 dlag(Ql)\ ‘OO < e ¢t (p—1/2 4 d—1/2)

Suppressed in 1/\/2[
A

—




Mean-field + high-d

Theorem [Arnaboldi, Stephan, Loureiro, Krzakala '23]

S11Q() = MPTIMT + diag(Q D) |1, < e (p~'7 +d717)

This implies MF-like PDE for the sufficient statistics:

1 P
fim. ) = — D 8(m — m()8(g — Qi (1))
=1

0, (m, q) =V, oy - (pC 5 fi)



Mean-field and high-d
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What can | do with that?  fromBenhier Montanar

Consider simplecase: k=1andp - o

= laTa<Wx>>
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What can | do with that?  fromBenhier Montanar

Consider simplecase: k=1andp - o

1 T
f(x:©) = —aT6(Wx))
p

c%init

Recall: Forn ocdandx ~ 40,1

RFE / Kernels: can only learn linear part

NNs: can learn non-linear components

163 if (o,,0) “standard”
1,21 (full Hermite expansion).
2 N2
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Follow-ups and challenges

H Characterisation of the stochastic dynamics [Ben Arous, Gheissari,
close to fixed points as a coloured diffusion Jagannath NeurlPS "22]

H Uniform control over the variance
and convergence rates

[Abbe, Adsera, Misiakiewicz,

Phenomenol fth Nnamics: :
enomenology of the dynamics COLT '22; Berthier, Montanari '23]

Functions of increasing complexity?

Distributions of increasing complexity? [Refinetti, lﬂgros]so, Goldt,
arxiv '22

Enz Role of initialisation
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Lecture Ill: Summary

» Deterministic analysis of two-layer neural nets
IN the “rich” regime

Q/ Phenomenology in the classical
and high-dimensional regime

Q/ Interplay between effective SGD noise
and overparametrisation

Q/ Dimension free limits in the mean-field regime



But this is only the tip of
an icepberq...
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