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“theory of machine learning”

Part I



Theory of machine learning?

Theory can mean different things.



Theory of machine learning?

Theory can mean different things.

fridge



Theory of machine learning?

Theory can mean different things.

fridge

How do I build a good 
fridge?

Fundamental laws that 
govern behaviour of the 

fridge

Physics Engineering



Theory of machine learning?

Theory can mean different things.

fridge

How do I build a good 
fridge?

Fundamental laws that 
govern behaviour of the 

fridge

Physics Engineering



Theory of magnetism

HJ,h(s) = − J ∑
(ij)∈E

sisj + h∑
i∈V
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Theory of magnetism

HJ,h(s) = − J ∑
(ij)∈E

sisj + h∑
i∈V

si

s ∈ {−1, + 1}Nμβ(s) =
1

Zβ,J,h
e−βHJ,h(s)

a.k.a. the Ising Model

h = 0

βJ = 0 βJ = ∞

βJ

βJc

m =
1

|V | ∑
i∈V

si
Order 

parameter:

m = 0 |m | > 0

[Ising 1925; Onsager 1944]



Theory can mean different things.

How do I build and train a 
state-of-the-art neural net?

Fundamental principles 
that govern learning

Theory Engineering

Theory of machine learning?

Theory can mean different things.



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Supervised Learning



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning

  f(x) = {yν if x ∈ 𝒟
0 otherwise



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning

  f(x) = {yν if x ∈ 𝒟
0 otherwise

Memorisation, 

not learning!



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning

Introduce a “cost function” ℓ(y, f(x)) ≥ 0

minimise ℛ( f ) = 𝔼(x,y)∼ρ[ℓ(y, f(x))] Population

Risk

  f(x) = {yν if x ∈ 𝒟
0 otherwise

Memorisation, 

not learning!



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning

Introduce a “cost function” ℓ(y, f(x)) ≥ 0

minimise ℛ( f ) = 𝔼(x,y)∼ρ[ℓ(y, f(x))] Population

Risk

Problems: •  In practice, does’t know , only 

• How to minimise over ?

ρ 𝒟
{f : ℝd → ℝ}

  f(x) = {yν if x ∈ 𝒟
0 otherwise

Memorisation, 

not learning!



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  f : ℝd → ℝ 𝒟

Supervised Learning

minimise ℛ( f ) = 𝔼(x,y)∼ρ[ℓ(y, f(x))] Population

Risk

Problems: •  In practice, does’t know , only 

• How to minimise over ?

ρ 𝒟
{f : ℝd → ℝ}

ℛ̂( f ) =
1
n ∑

ν∈[n]

[ℓ(yν, f(xν))] Empirical

Risk

minimise



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: Learn   from data  fΘ : ℝd → ℝ 𝒟

Supervised Learning

minimise ℛ(Θ) = 𝔼(x,y)∼ρ[ℓ(y, fΘ(x))] Population

Risk

Problems: •  In practice, does’t know , only 

• How to minimise over ?

ρ 𝒟
{f : ℝd → ℝ}

ℛ̂n(Θ) =
1
n ∑

ν∈[n]

[ℓ(yν, fΘ(xν))] Empirical

Risk

minimise



Let  ind. sampled from  .𝒟 = {(xν, yν)ν∈[n] ∈ ℝd × ℝ : ν ∈ [n]} ρ

Want: 

Supervised Learning

minimise Population

Risk

Problems: •  In practice, does’t know , only 

• How to minimise over ?

ρ 𝒟
{f : ℝd → ℝ}

Empirical

Risk

minimise

Learn   from data  fΘ : ℝd → ℝ 𝒟

ℛ(Θ) = 𝔼(x,y)∼ρ[ℓ(y, fΘ(x))]

ℛ̂n(Θ) =
1
n ∑

ν∈[n]

[ℓ(yν, fΘ(xν))]
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Stat. Learning Theory

∀fΘ ∈ ℋ

[Bartlett, Mendelson ’03]

Where Rad(ℋ) =
1
n

𝔼 sup
fΘ∈ℋ ∑

ν∈[n]

yν fΘ(xν)

Supervised binary classification (xν, yν) ∈ ℝd × {−1,1}, ν = 1,⋯, n

ℛ(Θ) − ℛ̂n(Θ) ≤ Rad(ℋ) +
log(1/δ)

n

Theorem (Uniform convergence): with probability at least 1 − δ



Supervised binary classification (xν, yν) ∈ ℝd × {−1,1}, ν = 1,⋯, n

[Zhang, Bengio, Hardt, Recht, Vinyals 17’]

∀fΘ ∈ ℋ ℛ(Θ) − ℛ̂n(Θ) ≤ Rad(ℋ) +
log(1/δ)

n

Theorem (Uniform convergence): with probability at least 1 − δ

Stat. Learning Theory
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f⋆(x) = argmin
f

ℛ( f ) = 𝔼[y |x]

For :ℓ(y, fΘ(x)) = (y − fΘ(x))2

Hence, for  the excess risk is given by: Θ̂ = Θ̂(X, y)

ℛ(Θ̂) − ℛ( f⋆) = 𝔼[( f⋆(x) − f(x; Θ))2]

= 𝔼X[Bias(Θ̂)2] + 𝔼X[Var(Θ̂)]

Bias(Θ̂)2 = 𝔼x [(f⋆(x) − 𝔼y [f(x; Θ̂)])
2

]
Var(Θ̂) = 𝔼x,y [(f(x; Θ̂) − 𝔼y [f(x; Θ̂)])

2

]

Where:
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From [Brown et al 2020]

Bias-variance trade-off



“Double descent”

Figure from [Belkin 21’]

[Belkin ’18]



[Nakkiran et al. ’19]

Parity-MNIST, 5 layers, 

fully-connected, no 

regularisation

zero	
training	

error

[Geiger et al. ’18]

Number of parameters
CIFAR10, no regularisation

“Double descent” [Belkin ’18]
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Worst case can be hard



Effective dimension?

How many features / samples  needed to correctly learn?



Neural scaling laws [Kaplan et al. ’20]
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Bad minima exist



Breiman’s suggestions
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Smells of… physics.

simple, solvable toy models
experiments

flexible maths 

“Reflections after refereeing papers for NIPS”, Leo Breiman, 1995

Breiman’s suggestions



Neural nets, before it was cool

c.f. [Hopfield 1982; Amit, Gutfreund, Sompolinsky 1985]
3/28



The capacity problem

K

yν(w⊤xν) ≥ K
w

Given , 

wants:
(xν, yν)ν∈[n]



d = 2
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d = 2
n = 4 αc(K = 0) = 2

The capacity problem



ℛ̂n(Θ) =
1
2

n

∑
μ=1

𝕀 [yμ ≠ sign(w⊤xμ − κ)] xμ ∼ 𝒩 (0d,1/dId)

w ∈ 𝕊d−1, {−1, + 1}d
μβ(Θ) =

e−βℛ̂n(Θ)

Zβ

c.f. CSP, sphere packing, etc.

yμ ∼ Rad(1/2)

The capacity problem



κ = 0

κ = 0.5

κ = 1w ∈ 𝕊d−1

The capacity problem

c.f. [Cover 1967]



The capacity problem

Rad(ℋ) =
1
2 (eg.s.(α) − 1) = C(κ)

d
n

[Abbara, Aubin, Krzakala, Zdeborová 2020; 
Haussler, Kearns, Opper, Schapire 1991]

ℋ = {f(x; Θ) = sign(w⊤x − κ) : w ∈ ℝd, κ ≥ 0}
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