Wonders of high-dimensions: the maths and physics of ML

Bruno Loureiro

Département d'Informatique
École Normale Supérieure \& CNRS
brloureiro@gmail.com

Outline

1. Theory of machine learning? A statistical physics point of view
2. Two layer neural networks in the lazy regime
3. Two layer neural networks in the rich regime

Part I

Statistical physics view of a "theory of machine learning"

Theory of machine learning?

Theory can mean different things.

fridge

Theory of machine learning?

Theory can mean different things.

fridge

Theory of machinc learning?

Theory can mean different things.

Physics
Fundamental laws that govern behaviour of the fridge

Engineering

How do I build a good fridge?

fridge

Theory of machine learning?

Theory can mean different things.

Engineering

How do I build a good fridge?

Theory of magnetism a.k.a. the Ising Model

$$
\begin{gathered}
H_{J, h}(s)=-J \sum_{(i j) \in E} s_{i} s_{j}+h \sum_{i \in V} s_{i} \\
\mu_{\beta}(s)=\frac{1}{Z_{\beta, J, h}} e^{-\beta H_{J, h}(s)} \quad s \in\{-1,+1\}^{N}
\end{gathered}
$$

Theory of magnetism a.k.a. the Ising Model

$$
\begin{gathered}
H_{J, h}(s)=-J \sum_{(i j) \in E} s_{i} s_{j}+h \sum_{i \in V} s_{i} \\
\mu_{\beta}(s)=\frac{1}{Z_{\beta, J, h}} e^{-\beta H_{J, h}(s)} \quad s \in\{-1,+1\}^{N}
\end{gathered}
$$

Theory of machine learning?

Theory can mean different things.

Theory

Fundamental principles that govern learning

Engineering

How do I build and train a state-of-the-art neural net?

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$$
f(x)= \begin{cases}y^{\nu} & \text { if } \quad x \in \mathscr{D} \\ 0 & \text { otherwise }\end{cases}
$$

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$$
\text { (5) } f(x)=\left\{\begin{array}{lll}
y^{\nu} & \text { if } x \in \mathscr{D} & \text { Memorisation, } \\
0 & \text { otherwise } & \text { not learning! }
\end{array}\right.
$$

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$$
\text { (.0) } f(x)=\left\{\begin{array}{lll}
y^{\nu} & \text { if } x \in \mathscr{D} & \text { Memorisation, } \\
0 & \text { otherwise } & \text { not learning! }
\end{array}\right.
$$

8 Introduce a "cost function" $\ell(y, f(x)) \geq 0$

$$
\text { minimise } \mathscr{R}(f)=\mathbb{E}_{(x, y) \sim \rho}[\ell(y, f(x))]
$$

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$$
f(x)=\left\{\begin{array}{lll}
y^{\nu} & \text { if } x \in \mathscr{D} & \text { Memorisation, } \\
0 & \text { otherwise } & \text { not learning! }
\end{array}\right.
$$

Introduce a "cost function" $\ell(y, f(x)) \geq 0$

$$
\text { minimise } \mathscr{R}(f)=\mathbb{E}_{(x, y) \sim \rho}[\ell(y, f(x))]
$$

Problems: . In practice, does't know ρ, only \mathscr{D}

- How to minimise over $\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$?

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$\because \quad$ Problems: . In practice, does't know ρ, only \mathscr{D} - How to minimise over $\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$?

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f_{\Theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

© Problems: . In practice, does't know ρ, only \mathscr{D}

- How to minimise over $\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$?

Supervised Learning

Let $\mathscr{D}=\left\{\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]} \in \mathbb{R}^{d} \times \mathbb{R}: \nu \in[n]\right\}$ ind. sampled from ρ.

Want: Learn $f_{\Theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ from data \mathscr{D}

$$
\begin{aligned}
& \text { minimise } \mathscr{R}(\Theta)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, f_{\Theta}(x)\right)\right] \\
& \text { minimise } \hat{R}_{n}(\Theta)=\frac{1}{n} \sum_{\nu \in[n]}\left[\ell\left(y^{\nu}, f_{\Theta}\left(x^{\nu}\right)\right)\right]
\end{aligned}
$$

- Problems: - In practice, does't know ρ, only \mathscr{D}
- How to minimise over $\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$?

Stat. Learning Theory

Supervised binary classification $\left(x^{\nu}, y^{\nu}\right) \in \mathbb{R}^{d} \times\{-1,1\}, \quad \nu=1, \cdots, n$

Stat. Learning Theory

Supervised binary classification $\left(x^{\nu}, y^{\nu}\right) \in \mathbb{R}^{d} \times\{-1,1\}, \quad \nu=1, \cdots, n$

Theorem (Uniform convergence): with probability at least $1-\delta$

$$
\forall f_{\Theta} \in \mathscr{H} \quad \mathscr{R}(\Theta)-\hat{\mathscr{R}}_{n}(\Theta) \leq \operatorname{Rad}(\mathscr{H})+\sqrt{\frac{\log (1 / \delta)}{n}}
$$

Where $\quad \operatorname{Rad}(\mathscr{H})=\frac{1}{n} \mathbb{E}\left[\sup _{f_{\Theta} \in \mathscr{H}} \sum_{\nu \in[n]} y^{\nu} f_{\Theta}\left(x^{\nu}\right)\right]$

Stat. Learning Theory

Supervised binary classification $\left(x^{\nu}, y^{\nu}\right) \in \mathbb{R}^{d} \times\{-1,1\}, \quad \nu=1, \cdots, n$

Theorem (Uniform convergence): with probability at least $1-\delta$

$$
\forall f_{\Theta} \in \mathscr{H} \quad \mathscr{R}(\Theta)-\hat{\mathscr{R}}_{n}(\Theta) \leq \operatorname{Rad}(\mathscr{H})+\sqrt{\frac{\log (1 / \delta)}{n}}
$$

Understanding deep learning requires rethinking generalization

assignments. While we consider multiclass problems, it is straightforward to consider related binary classification problems for which the same experimental observations hold. Since our randomization tests suggest that many neural networks fit the training set with random labels perfectly, we expect that $\hat{\Re}_{n}(\mathcal{H}) \approx 1$ for the corresponding model class \mathcal{H}. This is, of course, a trivial upper bound on the Rademacher complexity that does not lead to useful generalization bounds in realistic settings.
[Zhang, Bengio, Hardt, Recht, Vinyals 17']

Many questions, few answers

Despite the amazing progress on the engineering side, theory falls short.

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?

Many questions, few answers

Despite the amazing progress on the engineering side, theory falls short.

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
"Reflections after refereeing papers for NIPS",
Leo Breiman, 1995

Many questions, few answers

Despite the amazing progress on the engineering side, theory falls short.

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
"Reflections after refereeing papers for NIPS",
Leo Breiman, 1995

Bias-Variance decomposition

For $\ell\left(y, f_{\Theta}(x)\right)=\left(y-f_{\Theta}(x)\right)^{2}$:

$$
f_{\star}(x)=\underset{f}{\operatorname{argmin}} \mathscr{R}(f)=\mathbb{E}[y \mid x]
$$

Bias-Variance decomposition

For $\ell\left(y, f_{\Theta}(x)\right)=\left(y-f_{\Theta}(x)\right)^{2}$:

$$
f_{\star}(x)=\underset{f}{\operatorname{argmin}} \mathscr{R}(f)=\mathbb{E}[y \mid x]
$$

Hence, for $\hat{\Theta}=\hat{\Theta}(X, y)$ the excess risk is given by:

$$
\mathscr{R}(\hat{\Theta})-\mathscr{R}\left(f_{\star}\right)=\mathbb{E}\left[\left(f_{\star}(x)-f(x ; \Theta)\right)^{2}\right]
$$

Bias-Variance decomposition

For $\ell\left(y, f_{\Theta}(x)\right)=\left(y-f_{\Theta}(x)\right)^{2}$:

$$
f_{\star}(x)=\underset{f}{\operatorname{argmin}} \mathscr{R}(f)=\mathbb{E}[y \mid x]
$$

Hence, for $\hat{\Theta}=\hat{\Theta}(X, y)$ the excess risk is given by:

$$
\begin{aligned}
\mathscr{R}(\hat{\Theta})-\mathscr{R}\left(f_{\star}\right) & =\mathbb{E}\left[\left(f_{\star}(x)-f(x ; \Theta)\right)^{2}\right] \\
& =\mathbb{E}_{X}\left[\operatorname{Bias}(\hat{\Theta})^{2}\right]+\mathbb{E}_{X}[\operatorname{Var}(\hat{\Theta})]
\end{aligned}
$$

Where: $\quad \operatorname{Bias}(\hat{\boldsymbol{\Theta}})^{2}=\mathbb{E}_{x}\left[\left(f_{\star}(x)-\mathbb{E}_{y}[f(x ; \hat{\boldsymbol{\Theta}})]\right)^{2}\right]$

$$
\operatorname{Var}(\hat{\Theta})=\mathbb{E}_{x, y}\left[\left(f(x ; \hat{\Theta})-\mathbb{E}_{y}[f(x ; \hat{\Theta})]\right)^{2}\right]
$$

Bias-variance trade-off

```
error
```


Bias-variance trade-off

error

Bias-variance trade-off

error

From [Advani, Saxe 17']

Bias-variance trade-off

error

From [Advani, Saxe 17']

Bias-variance trade-off

Model Name	$n_{\text {params }}$	$n_{\text {layers }}$	$d_{\text {model }}$	$n_{\text {heads }}$	$d_{\text {head }}$	Batch Size	Learning Rate
GPT-3 Small	125 M	12	768	12	64	0.5 M	6.0×10^{-4}
GPT-3 Medium	350 M	24	1024	16	64	0.5 M	3.0×10^{-4}
GPT-3 Large	760 M	24	1536	16	96	0.5 M	2.5×10^{-4}
GPT-3 XL	1.3 B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7 B	32	4096	32	128	2 M	1.2×10^{-4}
GPT-3 13B	13.0 B	40	5140	40	128	2 M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0 B	96	12288	96	128	3.2 M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

"Double descent" [Bekikn" 18$]$

Figure from [Belkin 21']

"Double descent"

[Nakkiran et al. '19]

CIFAR10, no regularisation

Parity-MNIST, 5 layers, fully-connected, no regularisation

Many questions, few answers

Despite the amazing progress on the engineering side, theory falls short.

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
"Reflections after refereeing papers for NIPS",
Leo Breiman, 1995

Worst case can be hard

TRAINING A 3-NODE NEURAL NETWORK IS NP-COMPLETE

Avrim Blum ${ }^{*}$
MIT Lab. for Computer Science
Cambridge, Mass. 02139 USA

Ronald L. Rivest ${ }^{\dagger}$
MIT Lab. for Computer Science
Cambridge, Mass. 02139 USA

ABSTRACT

We consider a 2 -layer, 3 -node, n-input neural network whose nodes compute linear threshold functions of their inputs. We show that it is NP-complete to decide whether there exist weights and thresholds for the three nodes of this network so that it will produce output consistent with a given set of training examples. We extend the result to other simple networks. This result suggests that those looking for perfect training algorithms cannot escape inherent computational difficulties just by considering only simple or very regular networks. It also suggests the importance, given a training problem, of finding an appropriate network and input encoding for that problem. It is left as an open problem to extend our result to nodes with non-linear functions such as sigmoids.

Effective dimension?

How many features / samples needed to correctly learn?

Neural scaling laws

Scaling Laws for Neural Language Models

Abstract

We study empirical scaling laws for language model performance on the cross-entropy loss. The loss scales as a power-law with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitudel Other architectural details such as network width or depth have minimal effects within a wide range. Simple equations govern the dependence of overfitting on model/dataset size and the dependence of training speed on model size. These relationships allow us to determine the optimal allocation of a fixed compute budget. Larger models are significantly more sampleefficient, such that optimally compute-efficient training involves training very large models on a relatively modest amount of data and stopping significantly before convergence.

Many questions, few answers

Despite the amazing progress on the engineering side, theory falls short.

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
"Reflections after refereeing papers for NIPS",
Leo Breiman, 1995

Bad minima exist

Bad Global Minima Exist and SGD Can Reach Them

Shengchao Liu
Quebec Artificial Intelligence Institute (Mila)
Université de Montréal
liusheng@mila.quebec

Dimitris Papailiopoulos
University of Wisconsin-Madison dimitris@papail.io

Dimitris Achlioptas
University of Athens
optas@di.uoa.gr

Several works have aimed to explain why overparameterized neural networks generalize well when trained by Stochastic Gradient Descent (SGD). The consensus explanation that has emerged credits the randomized nature of SGD for the bias of the training process towards low-complexity models and, thus, for implicit regularization. We take a careful look at this explanation in the context of image classification with common deep neural network architectures. We find that if we do not regularize explicitly, then SGD can be easily made to converge to poorlygeneralizing, high-complexity models: all it takes is to first train on a random labeling on the data, before switching to properly training with the correct labels. In contrast, we find that in the presence of explicit regularization, pretraining with random labels has no detrimental effect on SGD. We believe that our results give evidence that explicit regularization plays a far more important role in the success of overparameterized neural networks than what has been understood until now. Specifically, by penalizing complicated models independently of their fit to the data, regularization affects training dynamics also far away from optima, making simple models that fit the data well discoverable by local methods, such as SGD.|

Breiman's suggestions

"Reflections after refereeing papers for NIPS", Leo Breiman, 1995

INQUIRY $=$ sensible and intelligent efforts to understand what is going on. For example:

- mathematical heuristics
- simplified analogies (like the Ising Model)
- simulations
- comparisons of methodologies
- devising new tools
- theorems where useful (rare!)
- shunning panaceas

Breiman's suggestions

"Reflections after refereeing papers for NIPS", Leo Breiman, 1995

INQUIRY $=$ sensible and intelligent efforts to understand what is going on. For example:

- mathematical heuristics
flexible maths
- simplified analogies (like the Ising Model)
- simulations
simple, solvable toy models
experiments
- comparisons of methodologies
- devising new tools
- theorems where useful (rare!)
- shunning panaceas

Neural nets, before it was cool

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\min }$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\min }$ of wrong bits. We find a critical line, $\alpha_{\mathrm{c}}(K)$ with $\alpha_{\mathrm{c}}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{\mathrm{c}}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

Given $\left(x^{\nu}, y^{\nu}\right)_{\nu \in[n]}$, wants:

$$
y^{\nu}\left(w^{\top} x^{\nu}\right) \geq K
$$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$d=2$
$n=2$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\min }$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$d=2$
$n=3$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$d=2$
$n=3$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$d=2$
$n=4$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$d=2$
$n=4$

$$
\alpha_{c}(K=0)=2
$$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger

\dagger Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{\mathrm{c}}(K)$ with $\alpha_{\mathrm{c}}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{\mathrm{c}}(K)$ and increases from zero for $\alpha>\alpha_{\mathrm{c}}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broken.

$$
\begin{array}{cl}
\hat{\mathscr{R}}_{n}(\Theta)=\frac{1}{2} \sum_{\mu=1}^{n} \llbracket\left[y^{\mu} \neq \operatorname{sign}\left(w^{\top} x^{\mu}-\kappa\right)\right] & x^{\mu} \sim \mathcal{N}\left(0_{d}, 1 / d I_{d}\right) \\
\mu_{\beta}(\Theta)=\frac{e^{-\beta \hat{\mathscr{R}}_{n}(\Theta)}}{Z_{\beta}} & y^{\mu} \sim \operatorname{Rad}(1 / 2) \\
& w \in \mathbb{S}^{d-1},\{-1,+1\}^{d}
\end{array}
$$

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger

\dagger Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract

We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\min }$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{c}(K)$. The calculations are done using a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is locally stable in a finite region of the K, α plane including the line, $\alpha_{c}(K)$ but there is a line above which the solution becomes unstable and replica symmetry must be broker

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each value of α and K, there is a minimum fraction $f_{\text {min }}$ of wrong bits. We find a critical line, $\alpha_{c}(K)$ with $\alpha_{c}(0)=2$. The minimum fraction of wrong bits vanishes for $\alpha<\alpha_{c}(K)$ and increases from zero for $\alpha>\alpha_{c}(K)$. The calculations are done using a saddle-point method and the order narameters at the saddle noint are assumed to be revlica svmmetric. This

Rademacher complexity and spin glasses:
A link between the replica and statistical theories of learning

$$
\begin{gathered}
\mathscr{H}=\left\{f(x ; \Theta)=\operatorname{sign}\left(w^{\top} x-\kappa\right): w \in \mathbb{R}^{d}, \kappa \geq 0\right\} \\
\operatorname{Rad}(\mathscr{H})=\frac{1}{2}\left(e_{\text {g.s. }}(\alpha)-1\right)=C(\kappa) \sqrt{\frac{d}{n}}
\end{gathered}
$$

[Abbara, Aubin, Krzakala, Zdeborová 2020; Haussler, Kearns, Opper, Schapire 1991]

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, $p=\alpha N$ of random N-bit patterns that an optimal neural network can store allowing a given fraction f of bit errors and with the condition that each right bit is stabilised by a local field at least equal to a parameter K. For each a critical line,

The space of interactions in neural network models

E Gardner

Department of Physics, Edinburgh University, Mayfield Road, Edinburgh EH9 3JK, UK $\alpha<\alpha_{c}(K)$ and \therefore-point method mmetric. This ine, $\alpha_{c}(K)$ but metry must be

Received 13 May 1987, in final form 27 July 1987

Abstract

The typical fraction of the space of interactions between each pair of N Ising spins which solve the problem of storing a given set of p random patterns as N-bit spin configurations is considered. The volume is calculated explicitly as a function of the storage ratio, $\alpha=p / N$, of the value $\kappa(>0)$ of the product of the spin and the magnetic field at each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and 1 (completely correlated). The capacity increases with the correlation between patterns from $\alpha=2$ for correlated patterns with $\kappa=0$ and tends to infinity as m tends to 1 . The calculations use a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is shown to be locally stable. A local iterative learning algorithm for updating the interactions is given which will converge to a solution of given κ provided such solutions exist.

The capacity problem

Optimal storage properties of neural network models

E Gardner \dagger and B Derrida \ddagger
† Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

First-order transition to perfect generalization in a neural network with binary synapses

Géza Györgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The examples are given by a reference (teacher) perceptron. It is shown that as the number of examples increases, the network undergoes a first-order transition, where it freezes into the state of the reference perceptron. When the transition point is approached from below, the generalization error reaches a minimal positive value, while above that point the error is constantly zero. The transition is found to occur at $\alpha_{G D}=1.245$ examples per coupling.
atio, $\alpha=p / N$ of the value $\kappa(>0)$ of the product of the spin and the magnetic field at each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and 1 (completely correlated). The capacity increases with the correlation between patterns from $\alpha=2$ for correlated patterns with $\kappa=0$ and tends to infinity as m tends to 1 . The calculations use a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is shown to be locally stable. A local iterative learning algorithm for updating the interactions is given which will converge to a solution of given κ provided such solutions exist.

The capacity problem

Optimal storage properties of neural network models
E Gardner \dagger and B Derrida \ddagger
\dagger Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
\ddagger Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

First-order transition to perfect generalization in a neural network with binary synapses

Géza Györgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)
Learning from Examples in Large Neural Networks
H. Sompolinsky ${ }^{(\mathrm{a})}$ and N. Tishby
AT\&T Bell Laboratories, Murray Hill, New Jersey 07974
H. S. Seung
Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 29 May 1990)

Learning fr amples are giv increases, the reference perc ror reaches a transition is fc

A statistical mechanical theory of learning from examples in layered networks at finite temperature is studied. When the training error is a smooth function of continuously varying weights the generalization error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state of perfect generalization coexists with a metastable spin-glass state.

The capacity problem

Optimal storage properties of neural network models

The statistical mechanics of learning a rule

Timothy L. H. Watkin* and Albrecht Rau ${ }^{\dagger}$

dinburgh, EH9 3JZ, UK vette, France

Department of Physics, University of Oxford, Oxford OX1 3NP, United Kingdom

Michael Biehl

Physikalisches Institut, Julius-Maximilians-Universität, Am Hubland, D-8700 Würzburg, Germany
A summary is presented of the statistical mechanical theory of learning a rule with a neural network, a rapidly advancing area which is closely related to other inverse problems frequently encountered by physicists. By emphasizing the relationship between neural networks and strongly interacting physical systems, such as spin glasses, the authors show how learning theory has provided a workshop in which to develop new, exact analytical techniques.

Learning fr amples are giv increases, the	Learn	Marc Mézard
reference perc		Jean-Pierre Nadal
ror reaches a	AT	Laboratoire de Physique Statistique,

Information storage and retrieval in synchronous neural networks
José F. Fontanari and R. Köberle
Phys. Rev. A 36, 2475 - Published 1 September 1987
a discontinuous transition
of perfect generalization c
vork of the perters which rens of attraction) s and study the size of the basins of attraction (the maximal allowable noise level still ensuring recognition) for sets of random patterns. The relevance of our results to the perceptron's ability to generalize are pointed out, as is the role of diagonal couplings in the fully connected Hopfield model.

And they were not alone...

Yann LeCun is with Levent Sagun and 3 others.
August 30
Stéphane Mallat's tutorial at the "Statistical Physics and Machine Learning back Together" summer school in Cargese, Corsica.

There is a long history of theoretical physicists (particularly condensed matter physicists) bringing ideas and mathematical methods to machine learning, neural networks, probabilistic inference, SAT problems, etc.

In fact, the wave of interest in neural networks in the 1980s and early 1990s was in part caused by the connection between spin glasses and recurrent nets popularized by John Hopfield. While this caused some physicists to morph into neuroscientists and machine learners, most of them left the field when interest in neural networks wanted in the late 1990s

With the prevalence of deep learning and all the theoretical questions that surround it, physicists are coming back!

Many young physicists (and mathaticians) are now working on trying to explain why deep learning works so well. This summer school is for them.

We need to find ways to connect this emerging community with the ML/AI community. It's not easy because (1) papers submitted by physicists to ML conferences rarely make it because of a lack of qualified reviewers; (2) conference papers don't count in a physicist's CV.
http://cargese.krzakala.org

Disordered Systems and Biological Organization

13 M. MEZARD
On the statistical physics of spin glasses. 119
16 J.J. HOPFIELD, D.W. TANK
Collective computation with continuous variables. 155
20 M.A. VIRASORO
Ultrametricity, Hopfield model and all that. 197
18 G. WEISBUCH, D. dHUMIERES
Determining the dynamic landscape of Hopfield networks. 187
23 L. PERSONNAZ, I. GUYON, G. DREYFUS
Neural network design for efficient information retrieval. 227
24 Y. LE CUN
Learning process in an asymmetric threshold network. 233
30 D. GEMAN, S. GEMAN
Bayesian image analysis. 301

The key idea

Idea: write this as Stat. Mech. problem

$$
\mu_{\beta}(\Theta)=\frac{1}{Z_{\beta}} e^{-\beta H(\Theta)} \quad H(\Theta)=\frac{1}{n} \sum_{\nu \in[n]} \ell\left(y^{\nu}, f\left(x^{\nu} ; \Theta\right)\right)+r(\Theta)
$$

The key idea

Idea: write this as Stat. Mech. problem

$$
\begin{aligned}
& \mu_{\beta}(\Theta)=\frac{1}{Z_{\beta}} e^{-\beta H(\Theta)} \quad H(\Theta)=\frac{1}{n} \sum_{\nu \in[n]} \ell\left(y^{\nu}, f\left(x^{\nu} ; \Theta\right)\right)+r(\Theta)
\end{aligned}
$$

Back to Breiman

"Reflections after refereeing papers for NIPS", Leo Breiman, 1995

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?

Back to Breiman

"Reflections after refereeing papers for NIPS", Leo Breiman, 1995

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?

