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Theory of magnetism
a.k.a.the Ising Model
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Theory of machine learning?

Theory can mean different things.

Theory Engineering
Fundamental principles How do | build and train a
that govern learning state-of-the-art neural net?
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Supervised binary classification (x*,y*) € RYx {-1,1}, v=1,--,n
y

Theorem (Uniform convergence): with probability at least 1 -6

log(1/6)

Vf, € R(O) — X (0) < Rad(%) +\/
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Where Rad(#) = —FE | sup Z y fo(x¥)
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[Bartlett, Mendelson '03]



Stat. Learning Theory

Supervised binary classification (x*, y¥) € RYx {-1,1}, v=1,--,n

Theorem (Uniform convergence): with probability at least 1 -6

log(1/6)

Vfy, € H R(©) — X% (0) < Rad(¥) +

n

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

assignments. While we consider multiclass pfoblems, it is strai ghtforward to consider related-binary
classification problems for which the same experimental observations hold. Since our randomization
tests suggest that many neural networks fit the training set with random labels perfectly, we expect

that R,, (H) = 1 for the corresponding model class H. This is, of course, a trivial upper bound on
the Rademacher complexity that does not lead to useful generalization bounds in realistic settings.

[Zhang, Bengio, Hardt, Recht, Vinyals 177]
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Despite the amazing progress on the engineering side,
theory falls short.

For instance, there are many important questions regarding neural networks
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m What is the effective number of parameters?
m Why doesn’t backpropagation head for a poor local minima?
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For £(y, fo(x)) = (v = fo(x))*

J(x) = argmin R(f) = E[y|x]

f

Hence, for @ = (:)(X, y) the excess risk is given by:

R(O) — R(f.) = E[(f.(x) — f(x; ©))*]
= E,[Bias(®)?] + E,[Var(0)]

Where;

Bias(©)? = E,

Var(0®) = E,,

_<f*(x) —E, [f(x; (:))] )2-

(f(x; ) -

-y [f(x; @)] )2_




Bias-variance trade-off
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Bias-variance trade-off
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Bias-variance trade-off

Model Name Nparams Mlayers  Qmodel  Mheads @head Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 104
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 10~
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~*

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

From [Brown et al 2020]
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Many questions, few answers

Despite the amazing progress on the engineering side,
theory falls short.

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:
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Worst case can be hard

TRAINING A 3-NODE NEURAL NETWORK
IS NP-COMPLETE

Avrim Blum* Ronald L. Rivest!

MIT Lab. for Computer Science MIT Lab. for Computer Science

Cambridge, Mass. 02139 USA Cambridge, Mass. 02139 USA
ABSTRACT

We consider a 2-layer, 3-node, n-input neural network whose nodes
compute linear threshold functions of their inputs. We show that it
is NP-complete to decide whether there exist weights and thresholds
for the three nodes of this network so that it will produce output con-
sistent with a given set of training examples. We extend the result
to other simple networks. This result suggests that those looking for
perfect training algorithms cannot escape inherent computational
difficulties just by considering only simple or very regular networks.
It also suggests the importance, given a training problem, of finding
an appropriate network and input encoding for that problem. It is
left as an open problem to extend our result to nodes with non-linear
functions such as sigmoids.



Effective dimension?

How many features /samples needed to correctly learn?
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Neu ral Sca‘lng |aWS [Kaplan et al. '20]

Test Loss

Scaling Laws for Neural Language Models

Abstract

We study empirical scaling laws for language model performance on the cross-entropy loss.
The loss scales as a power-law with model size, dataset size, and the amount of compute
used for training, with some trends spanning more than seven orders of magnitude| Other
architectural details such as network width or depth have minimal effects within a wide
range. Simple equations govern the dependence of overfitting on model/dataset size and the
dependence of training speed on model size. These relationships allow us to determine the
optimal allocation of a fixed compute budget. Larger models are significantly more sample-
efficient, such that optimally compute-efficient training involves training very large models
on a relatively modest amount of data and stopping significantly before convergence.
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Bad minima exist

Bad Global Minima Exist and SGD Can Reach Them

Shengchao Liu Dimitris Papailiopoulos
Quebec Artificial Intelligence Institute (Mila) University of Wisconsin-Madison
Université de Montréal dimitris @papail.io

liusheng @ mila.quebec

Dimitris Achlioptas
University of Athens
optas@di.uoa.gr

Several works have aimed to explain why overparameterized neural networks
generalize well when trained by Stochastic Gradient Descent (SGD). The consensus
explanation that has emerged credits the randomized nature of SGD for the bias
of the training process towards low-complexity models and, thus, for implicit
regularization. We take a careful look at this explanation in the context of image
classification with common deep neural network architectures. We find that if we
do not regularize explicitly, then SGD can be easily made to converge to poorly-
generalizing, high-complexity models: all it takes is to first train on a random
labeling on the data, before switching to properly training with the correct labels.
In contrast, we find that in the presence of explicit regularization, pretraining with
random labels has no detrimental effect on SGD. We believe that our results give
evidence that explicit regularization plays a far more important role in the success
of overparameterized neural networks than what has been understood until now.
Specifically, by penalizing complicated models independently of their fit to the
data, regularization affects training dynamics also far away from optima, making
simple models that fit the data well discoverable by local methods, such as SGD.|
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INQUIRY = sensible and intelligent efforts to understand what is going on. For
example:
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simplified analogies (like the Ising Model)
simulations

comparisons of methodologies

devising new tools

theorems where useful (rare!)

shunning panaceas



Breiman's suggestions

“Reflections after refereeing papers for NIPS”, Leo Breiman, 1995

INQUIRY = sensible and intelligent efforts to understand what is going on. For
example:

mathematical heuristics flexible maths
simplified analogies (like the Ising Model) simple, solvable toy models
simulations experiments
comparisons of methodologies

devising new tools

theorems where useful (rare!)

shunning panaceas

Smells of... physics.



Neural nets, before it was cool

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a (K) with a (0)=2. The minimum fraction of wrong bits vanishes for a <a_(K) and
increases from zero for @ > a (K). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

c.f. [Hopfield 1982; Amit, Gutfreund, Sompolinsky 1985]
3/28



The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

K

. 1% U \
Given (x¥,y")
wants:

yU(WTXD) > K

vE[n]




The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

d=72

|
S}

(




The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

d=72




The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

d=72




The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

d=72

|l
I~




The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

d=2
a(K=0)=2

|l
I~

o



The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a <a (K) and
increases from zero for @ > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

: I $ .
RO == D V[ #signw e = 0] Ly (0,1/a1)
u=1

/’tﬁ(®) =

o PE,(©) y# ~ Rad(1/2)

Zg we Sl {—1. + 1)

c.f. CSP, sphere packing, etc.



The capacity problem

Optimal storage properties of neural network models

E Gardnert and B Derrida:

i Department of Physics, Edinburgh University, Mayfieid Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a (K) with a (0)=2. The minimum fraction of wrong bits vanishes for a <a_(K) and
increases from zero for @ > a (K). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broker
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Rademacher complexity and spin glasses:
A link between the replica and statistical theories of learning
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[Abbara, Aubin, Krzakala, Zdeborova 2020;
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Abstract. The typical fraction of the space of interactions between each pair of N Ising
spins which solve the problem of storing a given set of p random patterns as N-bit spin
configurations is considered. The volume is calculated explicitly as a function of the storage
ratio, @ = p/ N, of the value «(>0) of the product of the spin and the magnetic field at
each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and
1 (completely correlated). The capacity increases with the correlation between patterns
from a =2 for correlated patterns with x =0 and tends to infinity as m tends to 1. The
calculations use a saddle-point method and the order parameters at the saddle point are
assumed to be replica symmetric. This solution is shown to be locally stable. A local
iterative learning algorithm for updating the interactions is given which will converge to
a solution of given x provided such solutions exist.
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First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

hUllllBul“llUlld 1D WWHDIMWILM,: 11V YWIUHHW 1D VEAIVREIGIVWY VAPIIWILIY GO & 1WIWVULIWVIL Vi LUV OWWIidERY.
ratio, @ = p/ N, of the value «(>0) of the product of the spin and the magnetic field at
each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and
1 (completely correlated). The capacity increases with the correlation between patterns
from a =2 for correlated patterns with x =0 and tends to infinity as m tends to 1. The
calculations use a saddle-point method and the order parameters at the saddle point are
assumed to be replica symmetric. This solution is shown to be locally stable. A local
iterative learning algorithm for updating the interactions is given which will converge to
a solution of given x provided such solutions exist.
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Learning fr Learning from Examples in Large Neural Networks
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A statistical mechanical theory of learning from examples in layered networks at finite temperature is
studied. When the training error is a smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.
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The statistical mechanics of learning a rule
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Michael Biehl
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A summary is presented of the statistical mechanical theory of learning a rule with a neural network, a Eptl' on-like Neural
rapidly advancing area which is closely related to other inverse problems frequently encountered by physi-

cists. By emphasizing the relationship between neural networks and strongly interacting physical systems,

such as spin glasses, the authors show how learning theory has provided a workshop in which to develop

new, exact analytical techniques.

Marc Mézard
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8 Jean-Pierre Nadal
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Information storage and retrieval in synchronous neural Networks o of the per-

José F. Fontanari and R. Kéberle iters which ren-

Phys. Rev. A 36, 2475 — Published 1 September 1987 s of attraction)
s and study the

a discontinuous transition  size of the basins of attraction (the maximal allowable noise level still
of perfect generalization ¢ ensuring recognition) for sets of random patterns. The relevance of
our results to the perceptron’s ability to generalize are pointed out, as
is the role of diagonal couplings in thle fully connected Hopfield model.



And they were not alone...
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Stéphane Mallat's tutorial at the "Statistical Physics and Machine Learning back

Biological Organization

There is a long history of theoretical physicists (particularly condensed matter
physicists) bringing ideas and mathematical methods to machine learning, neural

Szmwz pzym and- Ml Ltmwg beck ZaWu

networks, probabilistic inference, SAT problems, etc. 13 M. MEZARD

_ , _ , On the statistical physics of spin glasses. 119
In fact, the wave of interest in neural networks in the 1980s and early 1990s was in -
part caused by the connection between spin glasses and recurrent nets popularized 16 J J HOPFIELD, D.W. TANK
by John Hopfield. While this caused some physicists to morph into neuroscientists Collective computation with continuous variables. 155
and machine learners, most of them left the field when interest in neural networks 20 MA. ViRASORO

wanted in the late 1990s

Ultrametricity, Hopf ield model and all that. 197
With the prevalence of deep learning and all the theoretical questions that surround ;8 G &]gﬁ- D. d HlﬂlERfS T
it, physicists are coming back!

Determining the dynamic landscape of Hopfield networks. 187
Many young physicists (and mathaticians) are now working on trying to explain why >3 RSONN GUY DREY
deep learning works so well. This summer school is for them. 23 L. PENeural netz\:r(:rk 085?;\' '60;_ Q"‘Cirelf,\? inf ation retrieval 227
We need to find ways to connect this emerging community with the ML/AI 54. Y. LE Eli‘
community. It's not easy because (1) papers submitted by physicists to ML proc
conferences rarely make it because of a lack of qualified reviewers; (2) conference Leaming ess in an asymmet”c threshold network. 233
papers don't count in a physicist's CV. JO D. GEMAN, S. GEMAN

Bayesian image analysis. 301

http://cargese.krzakala.org



The key Idea

ldea: write this as Stat. Mech. problem




The key Idea

ldea: write this as Stat. Mech. problem

1 1
Uy (©) = —ePH®) H@©)=— ) £ (y.fx"

Zﬁ & ve(n]

0.05

O
o
=

O
o
@

AE for sp? [eV]
o
o
N

O
o
4

[A3] (ds Joj 3V



Back to Breiman

“Reflections after refereeing papers for NIPS”, Leo Breiman, 1995

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

m Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
m Why doesn’t backpropagation head for a poor local minima?
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Dynamical ‘ .
mean-field theory ’ Replica method

Glassy landscapes

One pass SGD A|90r|thm (Kac-Rice)
[Zdeborova '17]
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