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h = 0

βJ = 0 βJ = ∞

βJ

βJc

m =
1

|V | ∑
i∈V

si
Order 

parameter:

m = 0 |m | > 0



Theory can mean different things.

How do I build a state-
of-the-art neural net?

Fundamental principles 
that govern learning

Theory Engineering

Theory of machine learning?

Theory can mean different things.
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̂θ = argmin
θ

1
n

n

∑
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ℓ (yμ, fθ(xμ)) + r(θ)

Goal: Characterise error of predictor

ℛ̂n( ̂θ) =
1
n

n

∑
μ=1

ℓ(yμ, f ̂θ(xμ))ℛ( ̂θ) = 𝔼x,y [ℓ(y, f ̂θ(x))]
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Let  denote the training data and , and let 
 be a predictor belonging to some function class 

(xμ, yμ) ∈ ℝd × {−1,1}, μ = 1,⋯, n
̂y = fθ(x) ℋ

Supervised learning



Theorem (informal):

sup
fθ∈ℋ

ℛ( fθ) − ℛ̂n( fθ) ≤
dVC

n

VC dimension: number of parameters dVC ∝

Agnostic bounds: as few assumptions as possible on data  and labels xμ yμ

Let  denote the training data and , and let 
 be a predictor belonging to some function class 

(xμ, yμ) ∈ ℝd × {−1,1}, μ = 1,⋯, n
̂y = fθ(x) ℋ
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Overfitting Figure from [Belkin 21’]



Figure from [Belkin 21’]Overfitting



Overfitting

From “Language Models are Few-Shot Learners”, Brown et al 2020



Figure from [Belkin 21’]Overfitting



Overfitting Figure from [Nakkiran et al 19’]
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Worst case can be hard



Effective dimension?

How many features / samples  needed to correctly learn?
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Bad minima exist



Breiman’s suggestions

“Reflections after refereeing papers for NIPS”, Leo Breiman, 1995



Smells of… physics.

simple, solvable toy models
experiments

flexible maths 

“Reflections after refereeing papers for NIPS”, Leo Breiman, 1995

Breiman’s suggestions
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And they were not alone…
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“Board” time
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Teacher network

W⋆ ∈ ℝk×d

ζν ∼ 𝒩(0,1)xν ∼ 𝒩(0, Id)

Student network

1
p

W ∈ ℝp×d

̂fΘ(x) =
1
p

p

∑
i=1

σ(w⊤
i x)

Teacher-student setting

yν = fW*(xν) + Δζν

fΘ*(x) =
1
k

k

∑
r=1

σ(w*r
⊤x)

1
k
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Bridging the two regimes

x ∈ ℝd

h ∈ ℝp

x ∈ ℝd

h ∈ ℝp

p
d

Narrow networks

p ≪ d

Wide networks

p ≫ d???

(Saad & Solla) (Mean-field limit)



Infinite input limit

wν+1
i = wν

i − γ∇wi
ℛ

qν+1
jl − qν

jl =
γ

pd
(ℰν

j λν
l + ℰν

l λν
j ) +

γ2

p2d
ℰν

j ℰ
ν
l

mν+1
jr − mν

jr =
γ

pd
ℰν

j λ*r

ℰν
j ≡ σ′￼(λν

j )[ 1
k

k

∑
r=1

σ(λ*r ) −
1
p

p

∑
i=1

σ(λν
i ) + Δζν]



Main theoretical result

Theorem (Veiga, Stephan, BL, Krzakala, Zdeborová 22’)

For , , , ,k = O(1) p ∼ dκ γ ∼ d−δ δt = max (d−(1+κ+δ), d−(1+2(δ+κ)))

Ων+1 = Ων + δt ψ(Ων)
d → ∞ dΩ̄(t)

dt
= ψκ+δ(Ω̄(t))

Note:  number of samples seen at time  is τ = O(1) n ∼ τ/δt



Main theoretical result

For , , , ,k = O(1) p ∼ dκ γ ∼ d−δ δt = max (d−(1+κ+δ), d−(1+2(δ+κ)))

Ων+1 = Ων + δt ψ(Ων) :

qν+1
jl − qν

jl =
1

d1+κ+δ
Ilearning(Ων) +

1
d1+2(κ+δ)

Inoise(Ων)

mν+1
jr − mν

jr =
1

d1+κ+δ
I*learning(Ω

ν)

Interplay between learning and noise terms!



Phase diagram

�1 �1
2

0 1
X

0

1

^

Perfect learning

Bad
learning

No
ODEs

Plateau

p ∼ dκ γ ∼ d−δ



Phase diagram

�1 �1
2

0 1
X

0

1

^

Perfect learning

Bad
learning

No
ODEs

Plateau
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[Saad, Solla 95’]



Blue line: κ + δ = 0
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(same phenomenology)



Green region: κ + δ > 0
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Orange region: 0 > κ + δ > − 1/2
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Fundamental trade-off

Lowering  by a factor  requires  more samplesγ d−δ dδ
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Summary
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Sum-up

What do we mean by “theory”

Why statistical physics has anything 

to do with that?

A concrete example: 

phase diagram for one-pass SGD dynamics for 2-layer 


neural networks



But this is only the tip of 
an iceberg…
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