
PSL Week 2024 - Statistical Physics and Machine Learning

Two lectures on stochastic gradient descent

Bruno Loureiro1
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1 Introduction and motivation

Consider a supervised learning regression setting where we are given n i.i.d. samples (xν , yν)ν∈[n] ∈
Rd × R from a probability density ρ defined on Rd × R. The goal of supervised learning is to find
a (typically) parametric function fθ : Rd → R such that, given a new sample (xnew, ynew) ∼ ρ, the
prediction ŷ = fθ(xnew) is as close as possible to the true label ynew. The typical questions we are
interested in answering are:

• How can we find a good fθ (or equivalently a good θ ∈ Rm)? Or in other words, what algorithm
should we use?

• How much information from ρ do we need to find a good fθ? Or in other words, how much data
n do we need to see?

• How rich does the function class fθ needs to be? Or in other words, what in a good choice of
model or architecture and how large m should we take?

1.1 Empirical risk minimisation

A natural idea is to choose a loss function ` : Rd×R→ R+ that quantifies the error made by a given
choice of fθ. Therefore, in this metric the goal becomes to minimise the so-called population risk:

R(θ) = E(x,y)∼ρ [`(y, fθ(x))] . (Population risk)

There are two problems with this. The first one is that the statistician typically has no access to
R, since she typically only has access to the samples (xν , yν)ν∈[n] and not the full distribution ρ.
Therefore, the best she can aim to do is to minimise instead empirical risk:

R̂n(θ) =
1

n

n∑
ν=1

`(yν , fθ(x
ν)). (Empirical risk)

This is known as empirical risk minimisation (ERM), and it is one of the most popular ways of
learning fθ. However, there is no general guarantee that a global minimiser θ ∈ argmin R̂n of the
empirical risk will have a low population risk R. Indeed, for neural networks it is possible to find
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global minima of the empirical risk which have very bad generalisation (high population risk) (Liu
et al., 2020).

The second problem is that even if we had full access to R, for many choices of function class
{fθ : Rd → R : θ ∈ Rm} and loss function `, the population R risk is a non-convex function of the
parameter θ ∈ Rm. Therefore, finding the global minima is not easy, specially when the number of
parameters m is large. In particular, the choice of optimisation algorithm and initialisation are very
important when minimising non-convex objectives.

1.2 Descent algorithms

One of the most natural algorithms for optimisation is gradient descent (GD):

θk = θk − γk∇θR̂n(θk) (GD)

which consists of simply updating the weights in the steepest descent direction, with step sized gauged
by γk > 0. Note that GD naturally stops at a point in which ∇θR̂n = 0, which can be both a local
or global minima. Defining a continuous function θ(γkk) = θk by piecewise affine interpolation, when
the step size is small γk → 0+, GD is well approximated by a continous gradient flow:

θ̇(t) = −∇θR̂n(θ(t)). (1.1)

where θ̇ := dθ/dt. Or, seeing things in the opposite way, GD can be seen as the Euler discretisation of
gradient flow with t = kγk.

A drawback of GD is that at every step k, one needs to compute the full gradient over the empirical
risk. This means running over the full training set at every time - which can be slow if n is large.
A simple way to avoid this computational bottleneck is to estimate the gradient at each step k only
on a subset bk ⊂ [n] (known as a mini-batch) of the training data, which gives stochastic gradient
descent (SGD):

θk+1 = θk − γk
1

|bk|
∑
ν∈bk

∇θ`(yν , fθ(xν)). (SGD)

Together with its variants, SGD is one of the most used algorithm in modern machine learning. Besides
being more efficient than GD, one advantage of SGD is that it can be seen as an approximation for
gradient flow on the population risk:

θ̇ = −∇θR. (1.2)

Indeed, note that although ∇θkR̂n(θk) is an unbiased estimate of ∇θR at initialisation k = 0, since in
GD we use the same gradient at every step k, the gradient at time k > 0 will be a biased estimation of
the true population gradient at this time (Robbins and Monro, 1951). Instead, if each mini-batch is
chosen independently and without replacement (which is possible if a lot of data is available n� |bk|),
then at each k > 0 SGD will make a step on a direction which is an unbiased estimation of the
population loss gradient. This limit is known as one-pass SGD1, and if mostly often studied in the
particular case of |bk| = 1. Although the one-pass setting might seen unrealistic on a first sight, it
is worth noting that it is a good approximation to certain scenarios, such as Large Language Models
(LLM) like ChatGPT-3 which are trained of billions of tokens, see e.g. Table 2.2 in Brown et al.
(2020). Note that in the one-pass case, each step corresponds to seeing one sample, and therefore the
amount of data required to achieve a given error is equal to the number of SGD steps - or in other
words, convergence rates are equivalent to the sample complexity.

1Sometimes also refereed to online SGD, specially in the Statistical Physics literature.

2

https://en.wikipedia.org/wiki/Euler_method


With the observation above in mind, an useful way of thinking about one-pass SGD is as a noisy
version of gradient descent on the population risk:

θν+1 = θν − γν∇θR(θν) + γνε
ν (1.3)

where we have switched notation k → ν to stress that each step we take a fresh data, and we defined
the effective noise:

εν := ∇θ` (yν , fθν (xν))−∇θR(θν)

= ∇θ` (yν , fθν (xν))− E [∇θ`(y, fθν (x))] (1.4)

which has zero mean since the estimation is unbiased2. This observation can be surprising at first
sight: on average one-pass SGD optimises the true population risk even though this is an unknown
function! Therefore, understanding one-pass SGD essentially amounts to understanding two things:
(1) gradient descent on the population risk, and (2) the properties of the effective noise εν . It is
important to stress, however, that εν is a not a simple Gaussian noise, and therefore as a stochastic
process SGD can be very different from Brownian motion.

Our goal in the following will be precisely to study one-pass SGD for a particular class of supervised
learning problems.

2 Asymptotic limits of one-pass SGD

Four key ingredients define the one-pass SGD algorithm in eq. (1.3): the loss function `, the parametric
family fθ (a.k.a. architecture), the data distribution ρ and the learning rate γk. Classical analysis of
SGD consists of making strong assumptions on the objective function, for example θ 7→ `(y, fθ(x)) is
a convex function3, and deriving convergence rates which are fairly general on the data distribution
ρ, see (Moulines and Bach, 2011) for an example.

Instead, here we will take a different approach. We will make strong assumptions on the data
distribution ρ, with the benefit of being able to derive sharper results for a richer class of architectures
fθ. More precisely, we will consider the following setting.

Architecture: We are interested in the simplest architecture leading to a non-convex learning prob-
lem, the two-layer neural network:

fθ(x) =
1

p

p∑
i=1

aiσ(wi · x). (2.1)

where σ : R → R is an activation function, and the overall normalisation is chosen for convenience4.
Note that here we have θ = (a,W ) ∈ Rp × Rp×d, and therefore m = p(d + 1) parameters, where we
have defined the weight matrix W ∈ Rp×d by stacking wi ∈ Rp row-wise. Some commonly employed
activation functions are the ReLU σ(x) = max(0, x), the hyperbolic tangent σ(x) = tanh(x) and the
error function σ(x) = erf(x).

Loss function: Since we are dealing with regression, we will also focus on the square loss, defined
as:

`(y, fθ(x)) =
1

2
(y − fθ(x))2 . (2.2)

Abusing the notation, we will often omit the dependence on the data and denote `(θ) := `(y, fθ(x)).

2Note that since a fresh sample is drawn at every step ν, θν is independent of xν .
3Note this strongly constraints the architecture fθ. For instance, for the square loss this implies fθ(x) = 〈θ, x〉 is a

linear function.
4Indeed, the normalisation is chosen to match the mean-field literature (Chizat and Bach, 2018; Mei et al., 2018;

Rotskoff and Vanden-Eijnden, 2022; Sirignano and Spiliopoulos, 2020).
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Data: We assume i.i.d. Gaussian covariates xν ∼ N (0, 1/dId) and labels generated from a target
function with additive noise:

yν = f?(x
ν) + ξν (2.3)

where E[ξν ] = 0 and E[(ξν)2] = ∆ <∞. Moreover, we assume the target function f? : Rd → R belongs
to the class of multi-index models:

f?(x) = g (〈w?1, x〉, · · · , 〈w?r , x〉) (2.4)

for a given set of (fixed) weights w?1, . . . , w
?
r ∈ Rd and link function g : Rk → R. Note that in this

setting the covariates xν are unstructured: they are drawn isotropically in Rd, and all structure in the
data is actually encoded in the target f?, which depends on the covariates only through the projections
in the subspace spanned by the directions (w?k)k∈[r]. In the following, we will consider the asymptotic
limit where d → ∞ while r = Θd(1), with our multi-index function modelling a scenario where most
information on our high-dimensional data distribution is captured by a low-dimensional subspace. For
convenience, we define the matrix W ? ∈ Rr×d by stacking w?k row-wise. Learning the target function
f? therefore can be thought as jointly approximating the link function g and retrieving the subspace
W ?. Note that an important particular example of a multi-index model is given by a two-layer neural
network with r hidden-units:

f?(x) =
r∑

k=1

a?kσ?(〈w?k, x〉). (2.5)

where (W ?, a?) are the first and second layer weights and σ? : R→ R are the activation functions.

Remarks — A few remarks about the setting above are in place.

• In the context of statistical physics of learning, the setting above where the generative model
for the data distribution is given by a parametric hypothesis class which we learn with another
(not necessarily the same) model class is known as a teacher-student model5. Within this
terminology, we refer to f? as the teacher and fθ as the student, with θ? = (W ?, a?) the teacher
weights and θ = (W,a) the student weights.

• Here we have assumed the covariates to be unstructured for simplicity. The discussion that will
follow can be generalised to the correlated case xν ∼ N (0,Σ), see (Goldt et al., 2020).

• In the particular case where the target is a two-layer neural network eq. (2.5) with p = k and
σ? = σ, the global minimum of the population risk is given, up to permutation symmetry, by the
teacher parameters θ∗. This is known as the well-specified setting, and in this case learning
simplifies to estimating the parameters θ?.

• Analogously, the case where the problem is not well-specified (e.g. σ? 6= σ) but one can still
achieve perfect estimation (i.e. the lowest population risk R = ∆) is known as the realisable
setting. Note it requires at least p ≥ r.

2.1 Sufficient statistics

Consider the population risk for the problem we defined above:

R(θ) = E [`(y, fθ(x))] = 1/2 E
[
(y − fθ(x))2

]
= 1/2 Ex∼N (0,1/dId)

(g (〈w?1, x〉, . . . , 〈w?r , x〉)−
1

p

p∑
i=1

aiσ (〈wi, x〉)
)2
+ ∆/2 (2.6)

5This terminology for the generative model for data was introduced by Gardner and Derrida (1989).

4



where we used the fact that the noise ξ is independent from x. Note that in order to compute the
expectation over x, all we need to know is the joint distribution between the pre-activations:

λ?k = 〈w?k, x〉, λi = 〈wi, x〉. (2.7)

In the context of statistical physics, these are also known as local fields. Conditionally on W,W ?,
these are jointly Gaussian variables:

(λ?, λ) ∼ N (0r+p,Σ) , Σ :=

[
P M
M> Q

]
∈ R(r+p)×(r+p) (2.8)

where:

P :=
1

d
W ?W ?> ∈ Rr×r, Mν :=

1

d
W ?W> ∈ Rr×p, Q :=

1

d
WW> ∈ Rp×p. (2.9)

Note that by construction Σ, P and Q are symmetric matrices. Therefore, if we are only interested
in tracking the evolution of the population error throughout the dynamics, it is sufficient to track
the matrix Σν , or equivalently (Mν , Qν) since P is fixed. In the statistical physics parlour, these
covariance matrices are our order parameters, also known as sufficient statistics in statistics.
These are p(p+ 2r − 1)/2 parameters, in comparison with the original pd parameters for the SGD weights
W ν ∈ Rp×d. Therefore, if we are only interested in understanding the risk in the regime where d� p, r,
it might be advantageous to track Σν instead of W ν .

2.2 Evolution of the sufficient statistics

Motivated by the observation in section 2.1, can we derive equations for the evolution of the sufficient
statistics Σν from the original SGD for the weights eq. (1.3)?

Eν = E(aν , λ?ν , λν) := yν − 1

p

p∑
j=1

aνjσ
(
wνj , x

ν〉
)

(2.10)

such that `(aν ,W ν) = 1/2E(λ?, aν , λν)2. With that notation, the gradient of the loss with respect to
the weights are given by:

∇ai`(aν ,W ν) = −1

p
Eνσ (〈wνi , xν〉)

∇wi`(aν ,W ν) = −1

p
Eνaνi σ′ (〈wνi , xν〉)xν . (2.11)

Therefore, with these notations we can write the evolution of the weights under the one-pass SGD
dynamics as:

aν+1
i = aνi +

γa
p
E(λ?ν , aν , λν)σ (λνi )

wν+1
i = wνi +

γ

p
E(λ?ν , aν , λν)aνi σ

′ (λνi )xν (2.12)

As we will see later, it is important to keep separate learning rates for each layer (γ, γa) due to the
difference in the scaling of the gradient. Note that the right-hand side of the above only depend on
the second-layer weights aν and the local-fields λ?νk = 〈w?k, xν〉 and λνi = 〈wνi , xν〉.

Equation for Mν: Taking the dot product with respect to w?k at both sides and dividing by 1/d, we
can write closed form equations for the evolution of Mν :

Mν+1
ki = Mν

ki +
γ

pd
E(λ?ν , aν , λν)aνi σ

′ (λνi )λ?νk (2.13)

Note that this is a stochastic differential equation (SDE) for the r + p random variables Mρi.
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Equation for Qν: The equation for Q is just a bit more involved. First, we dot product both sides
of eq. (2.12) with respect to wν+1

j :

wν+1
i · wν+1

j =

(
wν +

γν
p
Eνaνi σ′ (λνi )xν

)
· wν+1

j (2.14)

and now we re-apply eq. (2.12), but now for wν+1
j :

wν+1
i · wν+1

j =

(
wν +

γν
p
Eνaνi σ′ (λνi )xν

)(
wνj +

γν
p
Eνaνjσ′

(
λνj
)
xν
)

(2.15)

Dividing by 1/d, this closes in Q:

Qν+1
ij = Qνij +

γν
pd

(
Eνaνi σ′ (λνi )λνj + Eνaνjσ′

(
λνj
)
λνi
)

+
γ2
ν

dp2
(Eν)2σ′ (λνi )σ′

(
λνj
)
||xν ||22 (2.16)

Summary — Putting the three equations together, we have a system of stochastic processes for
the joint evolution of the local fields (λ?k

ν , λνi ) and the second layer weights aνi :

aν+1
i = aνi +

γa
p
Eνσ (λνi )

Mν+1
ki = Mν

ki +
γ

pd
Eνaνi σ′ (λνi )λ?νk

Qν+1
ij = Qνij +

γ

pd
Eν
(
aνi σ

′ (λνi )λνj + aνjσ
′ (λνj )λνi )+

γ2
ν

dp2
(Eν)2aνi a

ν
jσ
′ (λνi )σ′

(
λνj
)
||xν ||22 (2.17)

where we recall the reader the definition of the displacement vector Eν = yν − 1/p
∑

i a
ν
i σ(〈wνi , xν〉).

Note, however, that these equations are not closed on the local fields and their moments. Not only
they depend explicitly on ||xν ||2, but they can depend on higher moments. For notational convenience,
we now define the following potential functions:{

Ψa(a, λ?, λ) = Eνσ (λνi )

ΨM (a, λ?, λ) = Eνaνi σ′ (λνi )λ?νk

Ψ
(gf)
Q (aν , λν? , λ

ν) = Eν
(
aνi σ

′ (λνi )λνj + aνjσ
′
(
λνj

)
λνi

)
,

Ψ
(var)
Q (aν , λν? , λ

ν) = (Eν)2aνi a
ν
jσ
′ (λνi )σ′

(
λνj

)
||xν ||22

(2.18)

which allow us to write the equations as:

aν+1
i − aνi = Ψa(a, λ?, λ)δta

Mν+1
ki −Mν

ki = ΨM (a, λ?, λ)δt

Qν+1
ij −Qνij =

[
Ψ

(gf)
Q (aν , λν? , λ

ν) +
γ

p
Ψ

(var)
Q (aν , λν? , λ

ν)

]
δt (2.19)

where we also defined the step-sizes δt = γ/pd and δta = γa/p. Note that this makes clear the difference
in scale between the step-size of the first layer δt and the second layer δta with respect to the covariate
dimension d. In order to obtain a homogeneous scaling with respect to dimension, from now on we
consider γa := γ/d such that δta = δt.

2.3 Deterministic limits

So far, our computations are exact: eq. (2.19) are just an alternative rewriting of eq. (1.3). Although
this can provide some insight in the evolution of the correlation functions, this rewriting is not very
useful since the eq. (2.19) are not autonomous. Fortunately, it can be shown they considerable simplify

6



in the limit of vanishing step-size δt→ 0+, where as we will see the stochastic evolution of the summary
statistics concentrate towards a deterministic limit.

Before stating this result, it will be convenient to define a short-hand notation. First, we extend
the local-fields covariance matrix from eq. (2.8) by stacking the second-layer weights aν block-wise:

Ων :=

aν 0 0
0 P Mν

0 Mν> Qν

 ∈ R(r+p+1)×(r+p+1) (2.20)

Second, we define the expectation of the summary statistics with respect to the random draw of the
sequence of data (xν , yν)ν∈[n]:

Ω̄ν = E[Ων ] (2.21)

As well as the expectation of the random potential functions eq. (2.18):

Ψ̄a(Ω̄) = E[Ψa(a, λ?, λ)], Ψ̄M (Ω̄) = E[ΨM (a, λ?, λ)], (2.22)

Ψ̄
(gf)
Q (Ω̄) = E[Ψ

(gf)
Q (a, λ?, λ)], Ψ̄

(var)
Q (Ω̄) = E[Ψ

(var)
Q (a, λ?, λ)] (2.23)

Note that these are deterministic function that depend only on the summary statistics Ω̄. Third, we
define a continuous time variable t ∈ R+ and an extension of the summary statistics to continuous
time Ω̄(t) as follows: at times t = νδt we have:

Ω̄(νδt) := Ω̄ν , ν ∈ [n] (2.24)

At all other times t ≥ 0, we define Ω(t) via linear interpolation. We are now ready to state our result.

Theorem 1 (Veiga et al. (2022), informal). Consider the stochastic process defined by eq. (2.19) with
step-size δt := γ/dp from the initial condition Ω̄(0) := Ω0 and r = Θ(1). Then, there exists a constant
C > 0 such that for any ν ∈ [n]:

||Ων − Ω̄(νδt)||∞ ≤ eCνδt
√

γ

dp
(2.25)

Where for γ/p = Θ(1), Ω̄(t) satisfies the following ordinary differential equation:

dā

dt
= Ψ̄a(ā(t), M̄(t), Q̄(t)),

dM̄ki

dt
= Ψ̄M (ā(t), M̄(t), Q̄(t)),

dQ̄ij
dt

= Ψ̄
(gf)
Q (ā(t), M̄(t), Q̄(t)) +

γ

p
Ψ̄

(var)
Q (ā(t), M̄(t), Q̄(t)) (2.26)

Otherwise, if γ/p = o(1), Ω̄(t) satisfies instead the following set of simplified equations:

dā

dt
= Ψ̄a(ā(t), M̄(t), Q̄(t)), (2.27)

dM̄ki

dt
= Ψ̄M (ā(t), M̄(t), Q̄(t)), (2.28)

dQ̄ij
dt

= Ψ̄
(gf)
Q (ā(t), M̄(t), Q̄(t)) (2.29)

Intuitively, theorem 1 states that the stochastic process for the summary statistics stays close to its
mean during a finite time horizon n = Θ(1), which is given by the solution of a deterministic ordinary
differential equation. A few comments are in place.
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Figure 1: The different scaling limits of one-pass SGD.

Remarks —

• The result above was first derived in a series of seminal works by Saad and Solla (1996, 1995a,b)
in the particular limit d → ∞ with γ, p = Θd(1). Although partial mathematical results were
known, e.g. (Reents and Urbanczik, 1998), a full rigorous proof only appeared in Goldt et al.
(2019), which built on a proof scheme from Wang et al. (2018, 2019). This was later generalised
to the γ/p = o(1) regime by Arnaboldi et al. (2023); Veiga et al. (2022) with the motivation of
studying wide neural networks p� 1.

• As we have previously stressed, one-pass SGD sees a single data sample (xν , yν) at every update
step ν. Therefore, the quantity of data seen by the algorithm is exactly equal the total number of
SGD steps. In continuous time, we have t = νδt, meaning that one continuous step corresponds
to δt−1 = dp/γ samples.

• Mathematically, the fact that the process can be asymptotically characterised by a simple ODE
is crucially due to the Markovian nature of one-pass SGD: the only source of randomness in the
parameters (W ν+1, aν+1) at step ν + 1 are, conditionally on the parameters on step ν, given
by the independent draw of the sample (xν , yν). The proof of this result is out of the scope
of these lectures, but it precisely builds on this observation by decomposing the process into
a deterministic part and a martingale correction that can be controlled. I refer the motivated
reader to Appendix A of Veiga et al. (2022).

• Note that the bound in eq. (2.25) has an exponential dependence on time t = νδt. This means
that theorem 1 guarantees the stochastic process is close to its expectation for any fixed time
horizon T = nδt = Θ(1), effectively implying we require n can be as large as δt−1 = dp/γ.
However, this is only a bound, and it does not imply that the variance of the process necessarily
blows up with time. As we will see later, for particular problems the variance stays bounded
for longer time scales (see (Arnaboldi et al., 2024) for an example). We don’t expect this to be
always true, and understanding under which conditions we can prove results which are uniform
in time is an important open problem.

• Theorem 1 was derived for standard one-pass SGD. However, similar asymptotic limits can also
be derived for some of its variants, for instance spherical SGD.

2.4 The different regimes

Theorem 1 hold under the condition that the step-size is small δt = γ/dp. In this section we have a
look at the different ways this limit can be achieved, as illustrated in fig. 1, and what this implies
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Figure 2: Evolution of the excess error R−∆/2 as a function of time for a two-layer network with width
p = 10 trained under one-pass SGD on data generated from a two-layer target function with r = 5,
label noise ∆ = 10−3 and activation functions σ(x) = σ?(x) = erf(x). Here, we kept the first layer fixed
ai = a?r = 1. Dots correspond to finite size simulations at different covariate dimensions d ∈ {5, 10, 50},
and the solid curve corresponds to the theoretical prediction. Interestingly, starting from a dimension
independent initial condition the trajectories are independent of the covariate dimension.

to the dynamics. For notational convenience, in the following the drop the distinction between the
random Ω and averaged process Ω̄, denoting all quantities without bars.

Classical regime — One of the most studied regime in the classical machine learning literature
is the gradient flow limit, corresponding to a vanishing learning rate γ → 0+ at fixed dimensions
p, d = Θ(1). As previously discussed in section 1.2, in this limit it was shown by Robbins and Monro
(1951) that one-pass SGD converges to the gradient flow on the population risk eq. (1.2). In terms of
the summary statistics, the equations simplify to:

ȧi(t) = Ψ̄a(a,M,Q) = EΩ(λ?,λ)∼N (0,Σ(t))[E(a, λ?, λ)σ (λi)]

Ṁki(t) = Ψ̄M (a,M,Q) = EΩ(λ?,λ)∼N (0,Σ(t))[E(a, λ?, λ)ai(t)σ
′ (λi)λ

?
k]

Q̇ij(t) = Ψ̄
(gf)
Q (a,M,Q) = EΩ(λ?,λ)∼N (0,Σ(t))[E(a, λ?, λ)

(
ai(t)σ

′ (λi)λj + aj(t)σ
′ (λj)λi

)
] (2.30)

These equations correspond precisely to what one would have obtained starting directly from the
gradient flow eq. (1.2). Very importantly, the equation for the covariance of the first layer weights
Q = 1/dWW>. This justifies our choice of notation for the potential functions Ψ̄(gf), Ψ̄(var): indeed, it
is easy to show that the potential Ψ̄(gf) comes from the gradient of the population risk, while Ψ̄(var)

is given by the variance of the effective SGD noise εν (1.4). Since, as shown by Robbins and Monro
(1951) the effective SGD noise is subleading in the learning rate γ, it is natural that Ψ̄(var) does not
contribute to the gradient flow limit. An illustration of the evolution of the population risk under the
one-pass SGD dynamics in the gradient flow regime is given in fig. 2.

One important remark is that if p, d = Θ(1), the gradient flow eq. (1.2) only depend on dp
parameters, while the above depend of p(p− 1)/2 +p(r+1) variables. Therefore, the summary statistics
description might not really be convenient in this regime.
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Figure 3: Evolution of the error R as a function of time for a two-layer network with width p = 8
trained under one-pass SGD on data generated from a two-layer of width r = 4 and activation functions
σ(x) = σ?(x) = erf(x) for different label noise values ∆ ∈ {0, 10−4, 10−3, 10−2}. Here, we kept the
first layer fixed ai = a?r = 1. Dots correspond to finite size simulations at dimension d = 103, and the
solid curve corresponds to the theoretical prediction.

High-dimensional regime — Consider the limit of high-dimensional covariates d → ∞ at fixed
learning rate and width γ, p = Θ(1), which we will refer to as the high-dimensional regime. This was
the limit that motivated the pioneering work of Saad and Solla (1996, 1995a,b), since in this limit the
SGD updates on the parameters are intractable (one needs to track pd parameters), and hence the
summary statistics description (which is independent of d) provide a real advantage.

The key difference in the high-dimensional regime is that the noise potential Ψ̄(var) is of the same
order as the gradient flow potential Ψ̄(gf). While the equations for ai,Mki stays the same, the equation
for the weights covariance is now given by:

Q̇ij(t) = Ψ̄
(gf)
Q (a,M,Q) +

γ

p
Ψ̄

(var)
Q (a,M,Q)

= E[E(a, λ?, λ)
(
ai(t)σ

′ (λi)λj + aj(t)σ
′ (λj)λi

)
] +

γ

p
E[E(a, λ?, λ)2ai(t)aj(t)σ

′ (λi)σ
′ (λj)]

(2.31)

An illustration of the evolution of the risk in this regime is given in fig. 3. As we are going to see
in some simple examples later, the presence contribution of the noise variance can have a non-trivial
effect of the SGD dynamics.

Mean-field regime — We now consider the limit of infinite hidden-layer width p → ∞ at fixed
d, γ = Θ(1). But before discussing the evolution of the summary statistics, let’s do a quick review of
the main results on the mean-field limit for neural networks.

The key idea, which draws back from early works in approximation theory of neural networks
(Barron, 1993; Kurkova and Sanguineti, 2001) is to see two-layer neural networks as discretisation
over functions defined over measures. More precisely, define:

fµ(x) =

∫
dµ(a,w)aσ(〈w, x〉) (2.32)

for a measure µ over Rd+1. Then, it is clear that our two-layer neural network is obtained as a

10



particular case fθ(x) = fµ̂p(x) where we have defined the empirical density of weights:

µ̂p(a,w) =
1

p

p∑
i=1

δ(a− ai)δ(w − wi) (2.33)

Following the same construction, we can define a population risk function in the space of measures:

R(µ) =
1

2
E
[
(y − fµ(x))2

]
=

1

2
E

[(
y −

∫
dµ(a,w)aσ(〈w, x〉)

)2
]

(2.34)

A key observation in this construction is that, differently from R(a,w) which is a non-convex function
over w, R(µ) is a convex function over µ (Bach, 2017; Bengio et al., 2005; Rosset et al., 2007). Again,
we can follow the same logic and define a gradient flow over the space of measures:

∂tµt = ∇(a,w) · (µtψ(·, µt)) (2.35)

where ψ(a,w, µ) = (ψa, ψw) is the continuous equivalent of the gradient flow equations:

ψa(a,w;µ) = E[σ(〈w, x〉)(y − fµ(x))] (2.36)

ψw(a,w;µ) = E[aσ′(〈w, x〉)x(y − fµ(x))] (2.37)

A key result in the mean-field line of work (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and
Vanden-Eijnden, 2022; Sirignano and Spiliopoulos, 2020) is to show that as p → ∞, under suitable
conditions, one-pass SGD over the parameters (W,a) stay close to the Wasserstein gradient flow
eq. (2.35). Moreover, due to convexity of R(µ), under some conditions over the activation function σ
and the initial conditions (W 0, a0), it can be shown that if the flow in eq. (2.35), it must converge to
a global minimum Chizat and Bach (2018). See (Bach and Chizat, 2021) for a great detailed review
on these results.

The mean-field results discussed above assume little on the data distribution. Can we derive
similar consequences for our setting from section 2? Note that from a first sight, from the point of
view of the structure of the ordinary differential equations the p → ∞ limit is exactly equal to the
gradient flow limit γ → 0+. An important difference, however, is that in this limit the dimension of
the sufficient statistics grow - recall that a ∈ Rp, M ∈ Rr×p and Q ∈ Rp×p. A natural idea would be
to define, similarly to eq. (2.33) a density of the summary statistics. However, while the dimension of
a,M is linear in p, Q has p(p− 1)/2 entries. However, for p > d, Q is at most a rank d matrix, and the
most relevant part of the dynamics should happen in the subspace spanned by the target directions
V = span(w?1, · · · , w?r). Defining the orthogonal decomposition of the weights:

W = PVW +W⊥ = MP−1W ? +W⊥ (2.38)

a similar decomposition on the local-fields and summary statistics:

λ⊥ = W⊥x = λ−MP−1λ?, Q⊥ = Q−MP−1M>. (2.39)

From the ODE for Q, it is easy to derive the asymptotic evolution of the perpendicular component
Q⊥:

Q̇⊥ij = Ψ⊥Q(a,M,Q) = E
[
E(a, λ?, λ)

(
ai(t)σ

′ (λi)λ
⊥
j + aj(t)σ

′ (λj)λ
⊥
i

)]
(2.40)

Note that this decomposition is exact. Surprisingly, from these equations, it can be shown that in the
large-width limit p→∞ the most important component in the evolution of Q is its diagonal qi = Qii.
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Indeed, under a mild assumption over W ? (see Arnaboldi et al. (2023) for details), the component
W⊥ perpendicular to V = spam(W ?) can be approximated by an independent random vector:

w⊥i ≈
√
qigi, gi ∼ Unif(Sd−r−1). (2.41)

This means that the important correlations between the hidden-units lie in the subspace spanned
by the target directions, with the correlation between the different perpendicular components of the
hidden-units Q⊥ij = 1/d〈w⊥i , w⊥j 〉 behaving as random forces in the dynamics. To make this precise,
define a random version of the hidden-layer covariances Q:

Q̃ = MP−1M> − diag(
√
qi)Ξdiag(

√
qi) (2.42)

with Ξ ∈ Rp×p a random matrix satisfying:

Ξii = 1, Ξij = 〈g, g′〉, g, g′ ∼ Unif(Sd−r−1). (2.43)

Consider R(t) := R(a(t),M(t), Q(t)) the population risk written in terms of the continuous limit of
the summary statistics. Remember this is a deterministic function. We can analogously define a
random version of this function by evaluating it on Q̃ instead of Q. Defining its expectation:

R(a(t),M(t), q(t)) = EΞ[R(a(t),M(t), Q̃(t))] (2.44)

One can show the following result:

Theorem 2 (Arnaboldi et al. (2023)). With probability at least 1− e−z2 on the initialisation:

sup
t∈[0,T ]

|R(a(t),M(t), Q(t))−R(a(t),M(t), q(t))| ≤ CeCT
√

log pT + z√
p

(2.45)

where the reduced summary statistics (a,M, q) solve the following averaged ODEs:

ȧi = EΞ[Ψ̄a(a,M, Q̃)], Ṁki = EΞ[Ψ̄M (a,M, Q̃)], q̇i = EΞ[Ψ̄
(gf)
Q (a,M, Q̃)] (2.46)

One can go even further and show that the contribution of the random matrix Ξ to the risk
R(a,M, Q̃) is Θ(d−1/2), and therefore in the joint limit where p, d→∞ we can completely ignore this
term in the dynamics, see theorem 3.5 in (Arnaboldi et al., 2023) for a detailed discussion.

Theorem 2 considerably simplifies the sufficient statistics description, reducing the number of
parameters in Q from p(p− 1)/2 to p. This allow us to follow an analogous construction to the mean-
field limit discussed above. Defining an empirical density over the summary statistics:

π̂p(a,m, q) =
1

p

p∑
i=1

δ(a− ai(t))δ(m−mi(k))δ(q − qi(t)) (2.47)

where mi ∈ Rr are the columns of M ∈ Rr×p. Note this is a density over Rr+2. By similar arguments
to the mean-field limit, when p→∞ this can be shown to converge weakly to a density µ̃t satisfying
a Wasserstein gradient flow:

∂tπt = ∇(a,m,q) · (πtψ(·;πt)) (2.48)

where ψ(a,m, q;µt) = (ψa, ψm, ψq) are the continuous version of the potentials in the right-hand side
of eq. (2.46).

3 Simple case studies

Up to now, we have only discussed the structural form of the limiting summary statistics evolution.
In this section, we look at some concrete cases where the dynamics can be solved, starting from the
simplest example: linear regression.
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3.1 Least-squares regression

Least-square regression is a particular case of the setting discussed in section 2 with r = p = 1 and
g(〈w?, x〉) = 〈w?, x〉. In other words, data (xν , yν)ν∈[n] is generated from:

yν = 〈w?, xν〉+ zν , xν ∼ N (0, 1/dId), zν ∼ N (0,∆). (3.1)

which we seek to learn by doing one-pass SGD on the linear model fθ(x) = 〈w, x〉:

wν+1 = wν − γ∇w`(yν , 〈wν , xν〉). (3.2)

Note that this is a convex problem over the parameters w. Since this problem is simple, a lot can be
said by directly looking at the weights. Therefore, it is a nice case study where we can compare the
dynamics in parameter and summary statistics space. Indeed, the gradient of the loss in eq. (3.2) is
simply given by:

g := ∇w`(y, 〈w, x〉) = −(y − 〈w, x〉)x
= − (w? − w)> xx> − zx (3.3)

hence, its expectation is given by:

E[g] = −1/d (w? − w) (3.4)

Note that even if we initialise w0 = 0d, the initial gradient will negatively point towards the signal w?.
As a starting point, let’s look at the gradient flow equations. Following the convention from section 2,
we define a step-size δt = γ/d, and take the limit γ → 0+ to get:

ẇ(t) = −dE[g(t)] = w? − w(t) (3.5)

This is a simple linear ODE, which admits a closed-form solution:

w(t) = w? + e−t(w0 − w?) (3.6)

where w0 := w(0) is the initial condition. This is a simple exponential relaxation from the initial
condition w0 to the global minimum w?, with a typical time scale τ = 1. Recalling that t = νδt = νγ/d,
we can see that the smaller γ/d, the more steps are needed to keep τ = Θ(1). Therefore, GF has a
sample complexity n = Θ(d). It will also be useful to write the explicit solution for the mean-squared
error:

mse(t) = 1/d||w(t)− w?||2 = e−2t1/d||w0 − w?||22 = e−2tmse0 (3.7)

As we discussed in eq. (1.3), the original one-pass SGD can be seen as a noisy version of GF:

wν+1 − wν = γ(w? − wν)>xνxν> + γzνxν

= (w? − wν) + γεν (3.8)

where the effective noise is explicitly given by:

εν = γ−1(1/dId − γxνxν>)(w? − wν) + zνxν (3.9)

Note that this is very different from unstructured Gaussian noise. In particular, it is composed by a
first factor which is proportional to a projector in the direction of the samples xν - which at every
step is just a random direction in Rd. Note this random term is self-annealing: the closer wν is to the
global minimum w?, the smaller it gets. The second random term is independent from the iterates,
and also lives in the spam of xν . However, despite the fact that zν and xν are Gaussian, the product
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Figure 4: Mean-squared error as a function of time for a least squares problem from initial condition
w0 = 0d and target weights w? ∼ Uni(Sd−1). (Left) Fixed learning rate γ = 0.25 and dimension
d = 100, for varying levels of label noise ∆ ∈ {0, 0.5, 1}. (Centre) Fixed dimension d = 100 and
label noise level ∆ = 0.5, for varying levels of learning rates γ ∈ {10−2, 10−1, 0.5}. (Right) Fixed
learning rate γ = 0.5 and label noise ∆ = 0.5 dimension d = 100, for varying problem dimensions
d ∈ {1, 10, 100}. In all plots, solid lines correspond to the theoretical curves, and crosses to finite-size
simulations.

zνxν is not a Gaussian variable. With this observation in mind, one could proceed by studying the
properties of the stochastic process eq. (3.8).

An alternative approach is to look at the evolution of the summary statistics in the limit where
δt = γ/d → 0+. Taking r = p = 1 and σ(x) = σ?(x) = 1 in eq. (2.26), we get the following ODEs for
m = 1/d〈w,w?〉 and q = 1/d||w||22:

ṁ(t) = E[(λ? − λ+ z)λ?] (3.10)

q̇(t) = E[2(λ? − λ+ z)λ+ γ(λ? − λ+ z)2] (3.11)

where the expectation is taken over:

(λ, λ?) ∼ N
(

0,

[
ρ m
m q

])
, z ∼ N (0,∆) (3.12)

where ρ = 1/d||w?||22. Taking the expectation explicitly is straightforward, and give us:

ṁ(t) = ρ−m(t) (3.13)

q̇(t) = 2(m(t)− q(t)) + γ(∆ + ρ+ q(t)− 2m(t)) (3.14)

Interestingly, the equation for m(t) is autonomous from q(t) - this is a particular feature of the least-
squares problem, and will not hold in more general cases. Again, these ODEs admit a closed form
solution:

m(t) = (1− e−t)ρ+m0e
−t (3.15)

q(t) =
2(ρ+ q0 − 2m0)− γ(ρ+ ∆ + q0 − 2m0)

2− γ e−(2−γ)t − 2e−t(ρ−m0) +
∆γ

2− γ (3.16)

where (m0, q0) = (1/d〈w0, w?〉, 1/d||w0||22) are the initial values of the summary statistics. A few com-
ments are in place.

Remarks:

• Note that for γ > 2, the norm of the predictor grows unboundedly as t → ∞. This defines a
critical learning rate γ? = 2 above which SGD over shoots the minima.
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• For γ ∈ (0, 2), the large time limit of the equations are given by:

lim
t→∞

m(t) = ρ (3.17)

lim
t→∞

q(t) = ρ+
γ∆

2− γ (3.18)

Which means we achieve perfect correlation with the global minimum. Nevertheless, for γ ∈ (0, 2)
we don’t perfectly recover the weights w? (which would imply q = ρ). Instead, we stay in a circle
of radius γ∆/(2− γ).

• We can also get a closed-form equation directly from mean-squared error:

mse(t) = 1/d||w(t)− w?||22 = ρ+ q(t)− 2m(t)

= e−(2−γ)t

(
mse0 −

γ∆

2− γ

)
+

γ∆

2− γ (3.19)

which is related to the population loss as R(t) = 1/2(mse + ∆). An illustration of the behaviour
of the mean-squared error with varying parameters in the problem is given in fig. 4.

• In the gradient flow limit γ → 0+ we recover precisely the expected result from the exact solution
eq. (3.6).

3.2 Phase retrieval

Least squares is in many ways a very special case: it is a convex optimisation problem with an exact
closed-form solution for the summary statistics description of the dynamics. As we will see now, this
is a luxury we don’t have in more complicated setting.

A natural next step with respect least-squares is the real phase retrieval problem. This corresponds
a problem with p = r = 1 and square activation function σ(x) = x2.6 In other words, data is generated
from:

yν = 〈w?, xν〉2 + zν , xν ∼ N (0, 1/dId), zν ∼ N (0,∆). (3.20)

which we seek to with a quadratic model itself fθ(x) = 〈w, x〉2. Note that although the quadratic
activation might seem unnatural from the perspective of neural networks and learning, the phase
retrieval problem is a classic inverse problem in signal processing. It naturally appears in problems
where one seeks to measure a signal with a detector which can only capture the amplitude, but not the
phase, such as in X-ray crystallography and astronomical imaging. See (Dong et al., 2023; Jaganathan
et al., 2016) for some examples of works in this context. Here, we study it as a proxy for the simplest
non-convex optimisation problem beyond least-squares, which as we will see contain already some of
the more complicated features of more general problems.

Let’s start by computing the gradient:

gν := ∇w`(wν) = −
(
〈w?, xν〉2 − 〈wν , xν〉2 + zν

)
2〈wν , xν〉xν (3.21)

As before, a good starting point is to look at the gradient flow limit. As in the linear case, the
expected gradient can be computed exactly, with the difference that it now involves fourth moments
of a Gaussian variable:

E[gν ] = −2/d
(
||w?||22 − 3||w||22

)
w − 2/d〈w?, w〉w? (3.22)

Note that’s very different from the linear case eq. (3.4): the zero initialisation w0 = 0d is a fixed point
of gradient flow. Moreover, the component pointing towards to the signal w? is proportional to the

6Note one could also have considered σ(x) = |x|, but since this is not differentiable, it will complicate the algebra.
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overlap m = 1/d〈w?, w〉, meaning that with a random initialisation w0, w? ∼ Uni(Sd−1(
√
d)), we have

m ∼ 1/
√
d and therefore the step towards the signal is vanishingly small in high-dimensions. Indeed,

since the signal component is proportional to the correlation, for large but finite d one might require
several steps to converge to the global minima. From a physical point of view, this is an entropic
phenomena: finding a single direction w? in Rd is like finding a needle in the haystack.

As before, analysing the summary statistics evolution eq. (2.26) involves tracking a coupled system
of ODEs, which in this case read:

ṁ(t) = 6 m(t)(ρ− q(t)) (3.23)

q̇(t) = 4
(
q(t)(ρ− 3q(t)) + 2m(t)2

)
+ 12γ

(
q(t)(ρ2 + 5q(t)2 − 2ρq(t)) + 4m2(ρ− 2q(t))

)
(3.24)

This time, the evolution of m is coupled non-trivially with q.
Since most of the interesting phenomenology happens on the evolution of m, to simplify our life

we will consider a spherical variant of SGD:

wν+1 =
√
d
wν − γ∇Sd−1(

√
d)`(w

ν)

||wν − γ∇Sd−1(
√
d)`(w

ν)|| (3.25)

where ∇Sd−1(
√
d) denotes de spherical gradient:

v = ∇Sd−1(
√
d)`(w) :=

(
Id −

ww>

d

)
∇w`(w)

= g − 1/d〈g, w〉w
= ((λ?)2 − (λν)2 + zν)2λν(xν − λνwν) (3.26)

In particular, note that the spherical gradient is orthogonal to w ∈ Sd−1(
√
d):

〈v, w〉 = 〈g, w〉 − 〈g, w〉 = 0 (3.27)

This algorithm ensures that if we initialise w0 ∼ Uni(Sd−1(
√
d)), the norm qν = ||wν ||22/d = 1 stays

constant for any ν ≥ 0. In order to derive ODEs for this spherical gradient, we need to have a closer
look at the denominator:

√
d

||wν − γ∇Sd−1(
√
d)`(w

ν)|| =
√
d
(
||wν − γvν ||2

)−1/2

=
√
d
(
||wν ||2 − 2γ〈wν , vν〉+ γ2||vν ||2

)−1/2

=
√
d
(
d− γ2||vν ||2

)−1/2

=

(
1 +

γ2

d
||vν ||2

)−1/2

(3.28)

where we used the orthogonality of the spherical gradient 〈v, w〉 = 0. One can check that ||vν ||2 is a
Θ(1) quantity:

||vν ||22 = ((λ?ν)2 − (λν)2 + zν)24(λν)2||xν − λνwν ||22
= ((λ?ν)2 − (λν)2 + zν)24(λν)2

(
||xν ||2 − (λν)2

)
(3.29)

Therefore, when d� 1 we can expand (1 + x)−1/2 ≈ 1− x/2 to get:

√
d

||wν − γvν || = 1− γ

2d
||vν ||2 + o(d−1) (3.30)
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Putting together, we have:

mν+1 =
(
mν − γ

d
〈w?, vν〉

)(
1− γ2

2d
||vν ||2 + o(d−1)

)
= mν − γ

d
〈w?, v〉 − mνγ2

2d
||vν ||22 + o(d−1)

= mν +
2γ

d

(
Eνλν (λ? −mνλν)− γmν(Eν)2

(
||xν ||2 − (λν)2

))
(3.31)

Taking the limit d→∞ with step-size δt = γ/d yields the evolution for m:

ṁ(t) = 2 E
[
Eλ(λ? −m(t)λ)− γm(t)E2(1− λ2)

]
= m(t)

[
4(1− 6γ)(1−m(t)2)− 2γ∆

]
(3.32)

Remarks:

• As anticipated from the discussion of the population gradient, m = 0 is a fixed point of the
equation above. How long does it take to escape it? Considering for simplicity the gradient flow
limit γ → 0+ and letting m = ε� 1, we can keep only the higher-order terms in the right-hand
side of the ODEs:

ε̇ ≈ 4ε (3.33)

which has solution ε(t) = e4tε0. So the time it takes for to develop order one correlation ε(t) ≈ 1
from ε0 ∼ 1/d is given by

t ≈ 1

8
log d (3.34)

Or in terms of sample complexity, n = Θ(d log d). This scaling has been derived by different
authors in the literature (Chen et al., 2019; Sun et al., 2016; Tan and Vershynin, 2018), including
the exact escape time from the leading order stochastic correction to eq. (3.32) (Arnaboldi et al.,
2024). Variants of the phase retrieval problem have been studied in the r = 1, p > 1 case by
Arnaboldi et al. (2024) and r, p > 1 by Martin et al. (2023). In both cases, it was shown that
overparametrisation does can only improve this sample complexity by a constant factor.

• Requiring that the first term (drift) to be positive implies we must have γ ∈ [0, 1/6]. Note that
the critical learning rate in this case is smaller than in the least squares case.

• There are two more fixed points, given by:

m± = ±
√

1− γ∆

2(1− 6γ)
(3.35)

In the gradient flow limit γ → 0+, this gives m± = ±1 which correspond to convergence to the
global minima ±w?.

3.3 Generalised linear models

A natural extension of the phase retrieval case is generalised linear estimation, where instead of the
square activation, we allow for a generic non-linear activation σ. In other words, data (xν , yν)ν∈[n] is
generated from:

yν = σ(〈w?, xν〉) + zν , xν ∼ N (0, 1/dId), zν ∼ N (0,∆). (3.36)
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which we seek to learn by doing one-pass SGD on a generalised linear model fθ(x) = σ(〈w, x〉). Note
that unless σ(x) = x, the loss is a non-convex function of the parameters w. This problem is also
known as the teacher-student perceptron problem in the statistical physics of learning literature, and
sometimes also called a single-index model in the context of learning.7

In the following, we will closely follow the argument by (Damian et al., 2023) for recovering the
result of (Ben Arous et al., 2021) from the ODEs. As for the phase retrieval problem, to simplify the
algebra we will again focus on spherical SGD:

wν+1 =
√
d
wν − γvν
||wν − γvν || (3.37)

with w?, w ∈ Sd−1(
√
d) and vν the spherical gradient. given by:

vν := ∇Sd−1(
√
d)`(w

ν) = −(σ(λ?ν)− σ(λν) + zν)σ′(λν)(x− λνw) (3.38)

As in the phase retrieval case, to get the ODEs, we expand the denominator and write an stochastic
process for mν :

mν+1 =
(
mν − γ

d
〈w?, vν〉

)(
1− γ

2d
||gν ||2 + o(d−1)

)
(3.39)

mν+1 = mν +
γ

d
〈w?, vν〉 − γ

2d
mν ||vν ||22 + o(d−1)

= mν +
γ

d

(
Eνσ′(λν) (λ?ν −mνλν)− γ

2
mν(Eν)2σ′(λν)2(||xν ||22 − λν2)

)
+ o(d−1) (3.40)

In the d→∞ limit with vanishing step-size δt = 1/d, this gives the following ODE:

ṁ = γE
[
Eσ′(λ) (λ? −mλ)− γ

2
mE2σ′(λ)2(1− λ2)

]
(3.41)

Note that in order for this ODE to be contracting, the first term must dominate over the second:

γ ≤ 2

m(t)

E[〈w?, v(t)〉]
E[||v(t)||2]

=
2

m(t)

E[Eσ′(λ) (λ? −mλ)]

E[E2σ′(λ)2(1− λ2)]
(3.42)

In fact, this ratio can be interpreted as a signal to noise ratio in the problem, the signal being given
by the correlation of the gradient with the global minimum w? and the noise given by the norm of the
gradient. To simplify things, we can take an optimal learning rate schedule, i.e. the largest learning
rate such that the problem is still contracting. This simplifies the ODE to:

ṁ(t) =
1

2m(t)

E[〈w?, v(t)〉]2
E[||v(t)||2]

=
1

2m(t)

E[Eσ′(λ) (λ? −mλ)]2

E[E2σ′(λ)2(1− λ2)]
(3.43)

Therefore, we now need to deal with the expectations above. The key idea to deal with a general
non-linear function σ is to expand it in a suitable basis. Since the argument of σ (i.e. the pre-
activation λ?, λ) are jointly Gaussian variables, a natural option to simplify the expectations involved
in the problem is to choose an orthogonal basis with respect to the Gaussian measure - the Hermite
polynomials, which we now review. The Hermite polynomials (Hek(x))k≥0 are a family of polynomials
of increasing degrees, with the first few given by:8

He0(x) = 1, He1(x) = x, He2(x) = x2 − 1, He3(x) = x3 − 3x (3.44)

The normalised Hermite polynomials satisfy the following useful properties.

7Although some people would reserve the single-index terminology exclusively to misspecified problems where one
needs to learn the so-called link function of the target σ?.

8Note that are different normalisation conventions for the Hermite polynomials. Here we adopt what is commonly
known as the probabilist Hermite polynomials
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Completness: Let µ denote the Gaussian measure, and recall:

L2(µ) =

{
f : R→ R,

∫
dµ(x)f(x)2 <∞

}
(3.45)

Then, any f ∈ L2(µ) admits a decomposition in terms of Hek(x):

f(x) =
∑
k≥0

ak
k!

Hek(x) (3.46)

where:

ak = Ex∼N (0,1) [f(x)Hek(x)] (3.47)

Orthogonality:

Ex∼N (0,1)[Hek(x)Hel(x)] = k!δjl (3.48)

Derivative:

He′k(x) = kHek−1(x) (3.49)

In particular, this implies that for f ∈ L2(µ):

f ′(x) =
∑
k≥1

fk
k!
khk−1(x) =

∑
k≥0

fk+1

k!
hk(x) (3.50)

Correlation: Consider x, x′ ∼ N (0, 1) with correlation E[xx′] = ρ. Then:

E[Hek(x)Hel(x
′)] = k!ρkδkl (3.51)

We refer the reader to Chapter 11 of (O’Donnell, 2021) for a deeper dive into Hermite polynomials.
Completeness allow us to expand the GLM in the Hermite basis:

σ(〈w, x〉) =
∑
k≥0

σk
k!

Hek(〈w, x〉), σ(〈w?, x〉) =
∑
k≥0

σk
k!

Hek(〈w?, x〉) (3.52)

As a warm-up, let’s compute how the population risk depends on the summary statistic m:

R(w)− ∆/2 = 1/2E[(σ(〈w?, x〉)− σ(〈w, x〉))2]

= 1/2
(
E[σ(λ?)2] + E[σ(λ)2]

)
− E[σ(λ?)σ(λ)] (3.53)

where we recall λ? = 〈w?, x〉 and λ = 〈w, x〉. Note that the first term are simple constants:

E[σ(λ?)2] = E[σ(λ)2] =
∑
k,l≥0

σkσl
k!l!

Ez∼N (0,1)[Hek(z)Hel(z)] =
∑
k,l≥0

σkσl
k!l!

k!δkl =
∑
k≥0

σ2
k

k!
(3.54)

(3.55)

While the cross term is given by:

E[σ(λ?)σ(λ)] =
∑
k,l≥0

σkσl
k!l!

E[Hek(λ
?)Hel(λ)] =

∑
k,l≥0

σkσl
k!l!

k!δklm
k =

∑
k≥0

σ2
k

k!
mk (3.56)
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Putting together:

R(w)− ∆/2 =
∑
k≥0

σ2
k

k!
(1−mk) (3.57)

Note that since ∇Sd−1(
√
d) = 1/d (w? −mw), the population (spherical) gradient is given by:

E[vν ] = ∇Sd−1(
√
d)R(w) = −

∑
k≥0

σ2
k

k!d
kmk−1(w? −mw) (3.58)

which implies that:

E[〈vν , w?〉] = −
∑
k≥0

σ2
k

(k − 1)!
mk−1(1−m2) (3.59)

Comparing to the phase retrieval case eq. (3.21), we see that again, although the gradient points
towards the global minimum w?, it involves a factor mk−1. Since at initialisation m ∼ 1/

√
d, for large

d one needs to overcome a vanishing gradient which is dominated by the first non-vanishing Hermite
coefficient k?, also known as the information exponent (Ben Arous et al., 2021):

E[〈vν , w?〉] = − σ2
k?

(k? − 1)!
mk?−1 +O(mk) (3.60)

It remains to deal with E[||v||2]. Since v is a random vector in dimension d with components Θ(d−1/2),
we have E[||v||22] = Θ(1). Putting together, expanding the right-hand side of eq. (3.43) around m = 0
give the following ODE:

ṁ = Cm2k?−3 (3.61)

for some constant C > 0. For k? > 2, this has solution a solution which corresponds to a escape time
T = O(dk

?−2). Noting that T = n/d, this gives a sample complexity n = Θ(dk
?−1). A few comments

on this result:

• Note this sample complexity is far from optimal. Indeed, other algorithms are known to achieve
perfect recovery with sample complexity n = Θ(d). An example is approximate message passing,
see (Barbier et al., 2019).

• It can be shown that by smoothening the loss function the sample complexity can be improved to
n = Θ(nk

?/2−1), which corresponds to the optimal sample complexity in the class of Correlational
Statistical Query (CSQ) algorithms (which includes one-pass SGD), see (Damian et al., 2023).
This draws back to landscape smoothening ideas from statistical physics (Biroli et al., 2020).

• We have considered a well-specified setting where p = r = 1 and σ?(x) = σ(x). For σ 6= σ?,
one must have p > 1 (often p → ∞) in order for the problem to be realisable, even if r = 1.
Berthier et al. (2023) has shown that a two-layer neural network with p large enough can learn
a single-index target function with k? > 1 with sample complexity n = Θ(d). Going beyond
k? > 1 and generally understanding the how p must scale with d in the high-dimensional limit
is an important open problem.

• The notion of information exponent can be extended to multi-index target functions r > 1, where
it is known as leap index (Abbe et al., 2023). However, since the directions can be coupled in
different ways, this makes the characterisation of which functions are ”hard” to learn richer.
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nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/

cab070d53bd0d200746fb852a922064a-Paper.pdf.
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