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1. Context

Funding — This thesis will take place within the PR[AI]RIE-PSAI project of which Bruno
Loureiro is a fellow.

Scientific context — Variational Inference (VI) has emerged as a powerful framework for
approximating high-dimensional, intractable probability distributions by optimizing over a family of
tractable distributions [4], alternatively to sampling. It has widespread applications in statistical
physics, notably for approximating Boltzmann measures and in Bayesian inference—where
one seeks to approximate posterior distributions. Recent breakthroughs in generative model-
ing (e.g., diffusion models and normalizing flows) have shown that highly expressive parametric
distributions can serve as flexible variational families [25, 31]. However, VI crucially differs from
standard generative modeling in that the algorithm leverages knowledge of an unnormalized target
density rather than relying on an abundance of training samples.

To this day, little theoretical work have analyzed VI. Like any learning framework, VI suffers
from two main bottlenecks:

• Approximation error, i.e., the target distribution may lie outside the chosen variational
family, introducing unavoidable bias.

• Optimization error, arising from the non-convexity of the parameterized KL minimization
and leading to suboptimal solutions or mode collapse (where multimodal targets are poorly
captured by focusing on fewer modes).

While Gaussian variational families have been extensively analyzed [16, 18, 9], there is comparatively
little rigorous theory for more expressive families such as mixtures of Gaussians, normalizing flows,
or diffusion-based models. In particular, mode collapse is recognized in practice but lacks a clear
theoretical understanding [5, 28].

This thesis will develop theoretical tools to analyze VI leveraging statistical physics. This
field has played a fundamental role in the development of high-dimensional probability, both from
mathematical and computational perspectives. Originally motivated by the study of macroscopic
properties in many-particle systems, the theoretical framework established by physicists in the late
19th century has since found fertile applications across various disciplines, particularly in computer
science. The interplay between these fields is long-standing, with several influential algorithms in
computer science drawing direct inspiration from statistical physics, including simulated annealing
[17] and diffusion models [27].

Beyond serving as a conceptual source of inspiration, this connection has also provided powerful
analytical tools for the study of high-dimensional problems motivated by machine learning, starting
with the pioneering work of [12]. Indeed, over the past decade these tools have been successfully
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employed to investigate multiple aspects of neural networks, such as the the interplay between over-
parametrization and generalization [29, 11, 14, 26], the benefits of feature learning to generalization
[8, 7], the analysis of descent-based training algorithms [33, 3, 2, 1, 22, 21, 20] and the analysis of
the geometry of loss landscapes [13, 19].

While statistical physics tools have been extensively applied to supervised learning, their use in
generative modeling remains largely uncharted. Developing this connection lies at the core of this
thesis project.

2. Objectives and Scientific roadmap

The central aim of this thesis is to develop theoretical tools to understand the approxi-
mation power and optimization properties of VI in high dimensions, focusing on state-of-the-
art models (mixtures, flows, and diffusion). The project will build upon methods from statistical
physics and high-dimensional probability, which have proven instrumental in studying super-
vised learning [29, 26, 3] but remain less explored for generative modeling. In particular, the project
will leverage tools such as the replica and cavity methods, dynamical mean-field theory, as well as
the Kac-Rice formula — originally developed for studying the geometry of high-dimensional energy
landscapes — to establish a link between the complexity of VI’s loss landscapes and the com-
putational challenges of efficiently sampling from the corresponding high-dimensional probability
measures. By extending techniques that have proven successful in supervised learning, these tools
will provide insights into how various aspects of the problem — such as the choice of variational
family, training algorithm, and hyperparameter tuning — affect the difficulty of approximating and
sampling high-dimensional measures under finite sample complexity and expressivity constraints.

In large-scale systems, such approaches often reveal phase transitions, concentration phenomena,
and scaling laws crucial to understanding the success and pitfalls of algorithms, and often leading
to a principled understanding of how to improve them.

The thesis will be organized on three research axis, which will provide a roadmap for addressing
the challenges highlighted above with concrete and deliverable goals.

First axis: Approximation Error for Flexible Variational Families

(i) Gaussian Mixture Families. Going beyond basic Gaussian families, finite or infinite mix-
tures can capture complex multimodal targets [15]. We aim to derive quantitative error bounds
under the reverse KL criterion, focusing initially on simplified settings (e.g., isotropic covariance)
and gradually increasing complexity (e.g., full covariance, adaptive number of components).

(ii) Neural Network Parametrizations. Modern VI frequently employs normalizing flows or
diffusion-based distributions. We will investigate:

• Expressiveness: How do architectural factors (depth, width, activation functions) constrain
the variational family?

• Continuous-time vs Discrete-time Diffusions: Realistic implementations use discretized
SDEs; understanding the gap between continuous and discrete dynamics is crucial for quan-
tifying approximation errors.
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Second axis: Optimization Dynamics and Mode Collapse

Non-convex objectives in high dimensions often lead to spurious local minima or to solutions cap-
turing fewer modes of the target distribution. Our goal is to characterize such phenomena more
rigorously:

• Gradient Flow Analyses. Extending [10, 18], we will derive idealized gradient-flow equa-
tions for mixtures and neural-network-based VI, comparing them to finite-step updates in
practice.

• Over-parameterization. Mirroring results in supervised learning [23, 6], we will ask whether
increasing the capacity (e.g., number of mixture components, network width) systematically
avoids poor local minima in VI.

• Mode Collapse Mechanisms. Focusing on Gaussian mixtures or synthetic multi-modal
targets, we will relate the loss geometry to the typical timescale or iteration count at which
collapse occurs, as well as propose heuristics to mitigate it [30].

Third axis: Path-Guided and Annealing-Based Variational Methods

Annealing is a classical strategy to traverse multimodal landscapes by smoothly deforming an
easy-to-sample distribution (e.g., a base Gaussian) into the target. Beyond parallel tempering and
sequential Monte Carlo, the latest methods include diffusion VI [24, 32]. We will:

• Analyze Annealing Schedules: Quantify speed-accuracy trade-offs for gradually transi-
tioning from the base to the target.

• Optimal Path Design: In diffusion or flow-matching frameworks, identify how to schedule
the formation of modes to ensure coverage and avoid collapses.

3. Timeline and Candidate’s profile

Timeline of the thesis — In Year 1, the focus will be on deepening knowledge of existing
Variational Inference (VI) theory and relevant statistical physics tools, conducting initial theoretical
studies on simple Gaussian mixtures, and validating predictions through small-scale experiments. In
Year 2, the work will extend to more flexible families like normalizing flows, begin a rigorous analysis
of training dynamics, and investigate mode collapse through numerical experiments. Finally, in
Year 3, the project will formulate and test annealing strategies for VI, study the role of over-
parameterization, and consolidate results into a unifying framework.

Project requirements — This thesis involves both significant computational and analytical
components, demanding a candidate with a strong mathematical background and solid programming
skills. Furthermore, the interdisciplinary nature of the proposed research calls for a candidate with
robust training in physics, a willingness to assimilate concepts from machine learning, and the ability
to communicate effectively with diverse research communities.

Non-discrimination, ouverture et transparence — L’ensemble des partenaires de PR[AI]RIE-
PSAI s’engagent à soutenir et promouvoir l’égalité, la diversité et l’inclusion au sein de ses commu-
nautés. Nous encourageons les candidatures issues de profils variés, que nous veillerons à sélectionner
via un processus de recrutement ouvert et transparent.
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