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1 Introduction and motivation

Consider a supervised learning regression setting where we are given n i.i.d. samples (xν , yν)ν∈[n] ∈
Rd × R from a probability density ρ defined on Rd × R. The goal of supervised learning is to find
a (typically) parametric function fθ : Rd → R such that, given a new sample (xnew, ynew) ∼ ρ, the
prediction ŷ = fθ(xnew) is as close as possible to the true label ynew. But how do we search for fθ in
practice (or equivalently, for θ ∈ Rm)?

1.1 Empirical risk minimisation

A natural idea is to choose a loss function ` : Rd×R→ R+ that quantifies the error made by a given
choice of fθ. Therefore, in this metric the goal becomes to minimise the so-called population risk:

R(θ) = E(x,y)∼ρ [`(y, fθ(x))] . (Population risk)

There are two problems with this. The first one is that the statistician typically has no access to
R, since she typically only has access to the samples (xν , yν)ν∈[n] and not the full distribution ρ.
Therefore, the best she can aim to do is to minimise instead empirical risk:

R̂n(θ) =
1

n

n∑
ν=1

`(yν , fθ(x
ν)). (Empirical risk)

This is known as empirical risk minimisation (ERM), and it is one of the most popular ways of
learning fθ. However, there is no general guarantee that a global minimiser θ ∈ argmin R̂n of the
empirical risk will have a low population risk R. Indeed, for neural networks it is possible to find
global minima of the empirical risk which have very bad generalisation (high population risk) [1].

The second problem is that even if we had full access to R, for many choices of function class
{fθ : Rd → R : θ ∈ Rm} and loss function `, the population R risk is a non-convex function of the
parameter θ ∈ Rm. Therefore, finding the global minima is not easy, specially when the number of
parameters p is large. In particular, the choice of optimisation algorithm and initialisation are very
important when minimising non-convex objectives.

1.2 Descent algorithms

One of the most natural algorithms for optimisation is gradient descent (GD):

θk = θk − γk∇θR̂n(θk) (GD)
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which consists of simply updating the weights in the steepest descent direction, with step sized gauged
by γk > 0. Note that GD naturally stops at a point in which ∇θR̂n = 0, which can be both a local
or global minima. Defining a continuous function θ(γkk) = θk by piecewise affine interpolation, when
the step size is small γk → 0+, GD is well approximated by a continous gradient flow:

θ̇(t) = −∇θR̂n(θ(t)). (Gradient flow)

where ˙≡ d/dt. Or, seeing things in the opposite way, GD can be seen as the Euler discretisation of
gradient flow with t = kγk.

An issue with GD is that at every step k, one needs to compute the full gradient over the empirical
risk. This means running over the full training set at every time - which can be slow if n is large.
A simple way to avoid this computational bottleneck is to estimate the gradient at each step k only
on a subset Bk ⊂ [n] (known as a mini-batch) of the training data, which gives stochastic gradient
descent (SGD) [2]:

θk+1 = θk − γk
1

|Bk|
∑
ν∈Bk

∇θ`(yν , fθ(xν)). (SGD)

Together with its variants, SGD is one of the most used algorithm in modern machine learning. Besides
being more efficient from GD, one advantage of SGD is that it can be seen as an approximation for
gradient flow on the population risk θ̇ = −∇θR. Indeed, note that although ∇θkR̂n(θk) is an unbiased
estimate of ∇θR at initialisation k = 0, since in GD we use the same gradient at every step k, the
gradient at time k > 0 will be a biased estimation of the true population gradient at this time. Instead,
if each mini-batch is chosen independently and without replacement (which is possible if a lot of data
is available n� |Bk|), then at each k > 0 SGD will make a step on a direction which is an unbiased
estimation of the population loss gradient. This limit is known as one-pass SGD1, and if mostly
often studied in the particular case of |Bk| = 1. Note that in this case, the each step corresponds to
seeing one sample, and therefore the amount of data required to achieve a given error is equal to the
number of steps needed. Therefore, one-pass SGD can be seen as a noisy version of gradient descent
on the population risk:

θν+1 = θν − γν∇θR(θν) + γνεν (1.1)

where we have switched notation k → ν to stress that each step we take a fresh data, and we defined
the effective noise:

εν ≡ ∇θ` (yν , fθν (xν))−∇θνR(θν) = ∇θ` (yν , fθν (xν))− E [∇θν `(y, fθν (x))] (1.2)

which has zero mean since the estimation is unbiased2. This observation is striking: up to noise,
one-pass SGD optimises the true population risk even though this is an unknown function!

This discussion leads to our main question in these notes. Can we characterise the one-pass SGD
dynamics? For instance, can we understand the role of the effective noise? What is the interplay
between the architecture fθ and the optimisation algorithm?

2 Sharp analysis of one-pass SGD

There are five key ingredients that define the one-pass SGD dynamics: the loss function `, the para-
metric family fθ (a.k.a. architecture), the data distribution ρ and the learning rate γk. To have a
sharp description of the dynamics induced by the algorithm, we need to specify these quantities.

1Sometimes also refereed to online SGD, specially in the Statistical Physics literature.
2Note that since a fresh sample is drawn at every step k, θk is independent of xk.
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Architecture: In these notes, we will be interested in the simplest architecture leading to a non-
convex problem, the two-layer neural network:

fθ(x) =
1

p

p∑
i=1

aiσ(wi · x). (2.1)

where σ : R → R is an activation function, and the overall normalisation is chosen for convenience3.
Note that here we have θ = (a,W ) ∈ Rp × Rp×d, and therefore m = p(d + 1) parameters, where we
have defined the weight matrix W ∈ Rp×d by stacking wi ∈ Rp in the columns.

Loss function: Since we are dealing with regression, we will also focus on the square loss, defined
as:

`(y, fθ(x)) =
1

2
(y − fθ(x))2 . (2.2)

Data: While much can be said about the dynamics without specifying the data model, if we aim
at a sharp characterisation we need to compute the averages over the data exactly (for instance in
the definition of R). Therefore, we need a model for the data distribution ρ. Here, we will consider
a teacher-student model4, where the labels are generated, up to an additive noise, by a similar
teacher architecture, i.e. a two-layer neural network:

yν =
1

k

k∑
ρ=1

a?ρσ?(w
?
ρ · xν)︸ ︷︷ ︸

f?(xν)

+
√

∆ξν , ξν ∼ N (0, 1), xν ∼ N (0, 1/dId) i.i.d.. (2.3)

We refer to f? as the teacher (or target function), and to θ? = (a?,W ?) ∈ Rk ×Rk×d as the teacher
parameters. Here we have assumed the data is Gaussian i.i.d. for simplicity, but the discussion
that will follow is valid for more general distributions of inputs [9]. Note that if p = k, the global
minimum of the population risk is given, up to permutation symmetry, by the teacher parameters
θ∗. Therefore, in the teacher-student model learning boils down to a statistical estimation problem.
The same discussion holds in the case where p > k, where one can also achieve perfect estimation,
corresponding to R = ∆ due to the intrinsic noise (however, the exact global minimum can be more
complicated). These cases are sometimes referred to as realisable setting.

In what follows we will focus on the realisable setting with p ≥ k and σ? = σ. Moreover, to
simplify the discussion we will fix the second layer weights a?ρ = ai = 1 for all ρ ∈ [k] and i ∈ [p].
Everything we will see can be generalised to the case in which these weights are trained, and we refer
the interested reader to [10] for the details.

2.1 Sufficient statistics and order parameters

For our teacher-student model introduced above, the population risk can be written very explicitly as:

R(w) = E(x,y)∼ρ

[
1

2
(y − fθ(x))2

]
= Ex,ξ

1

2

1

k

k∑
ρ=1

σ(w?ρ · x) +
√

∆ξ − 1

p

p∑
i=1

aiσ(wi · x)

2
= Ex∼N (0,1/dId)

1

2

1

k

k∑
ρ=1

σ(w?ρ · x)− 1

p

p∑
i=1

σ(wi · x)

2+ ∆ (2.4)

3Indeed, the normalisation is chosen to match the mean-field literature [5–8].
4This terminology for the generative model for data was introduced by the physicist Elisabeth Gardner in [4], and it

is standard in Statistical Physics of learning.
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where in the third equality we used the fact that the noise is independent from the inputs. Note that
in order to compute the average, all we need to know is the joint distribution of λ?ρ = w?ρ · x and
λi = wi · x:

R(w) = E(λ?,λ)

1

2

1

k

k∑
ρ=1

σ(λ?ρ)−
1

p

p∑
i=1

σ(λi)

2+ ∆ (2.5)

Although this might seen a simple observation, it is not trivial, since it tell us that in order to
know the error it is sufficient to track only k + p quantities instead of (k + p)d. The sufficient
statistics (λ?, λ) ∈ Rk+p are known in the statistical physics literature as local fields. Note that since
x ∼ N (0, 1/dId), at every step ν ∈ [n] of SGD the local fields are jointly Gaussian variables:

(λ?, λν) = N (0k+p,Ω
ν) , Ων ≡

[
P Mν

Mν> Qν

]
∈ R(k+p)×(k+p) (2.6)

where:

P =
1

d
W ?W ?> ∈ Rk×k, Mν =

1

d
W ?W ν> ∈ Rk×p, Qν =

1

d
W νW ν> ∈ Rp×p. (2.7)

Note that by construction Ων , P and Qν are symmetric matrices. Therefore, if we are only interested
in tracking the evolution of the population error throughout the dynamics, it is sufficient to track the
matrix Ων , or equivalently (Mν , Qν) since P is fixed. In the statistical physics parlour, these are our
order parameters.

2.2 Low-dimensional dynamics

Since we only need to track Ων to track the evolution of the error, can we derive closed-form evolution
equations for Ων? First, we need to compute the gradient of the loss. Defining the displacement vector
at step ν:

Eν = yν − 1

p

p∑
j=1

σ(wνj · xν) (2.8)

such that `(y, fθ(x)) = 1/2(Eν)2, this is simply given by:

∇wi`(y, fθ(x)) = −1

p
Eνσ′(wνi · xν)︸ ︷︷ ︸

≡Eνi

xν . (2.9)

Therefore, with these notations we can write the evolution of the weights under the one-pass SGD
dynamics as:

wν+1
i = wνi +

γν
p
Eνi xν (2.10)

Equation for Mν: Taking the dot product with respect to w?ρ at both sides and dividing by 1/d, we
can write closed form equations for the evolution of Mν :

Mν+1
ρi = Mν

ρi +
γν
pd
Eνi λ?ρ (2.11)

Note that this is a stochastic differential equation (SDE) for the k + p random variables Mρi.
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Equation for Qν: The equation for Q is just a bit more involved. First, we dot product both sides
of eq. (2.10) with respect to wν+1

j :

wν+1
i · wν+1

j =

(
wν +

γν
p
Eνi xν

)
· wν+1

j (2.12)

and now we re-apply eq. (2.10), but now for wν+1
j :

wν+1
i · wν+1

j =

(
wν +

γν
p
Eνi xν

)(
wνj +

γν
p
Eνj xν

)
(2.13)

Dividing by 1/d, this closes in Q:

Qν+1
ij = Qνij +

γν
pd

(
Eνi λνj + Eνj λνi

)
+

γ2
ν

dp2
Eνi Eνj ||xν ||22 (2.14)

Putting these two equations together, up to the norm ||xν ||225 we have obtained closed-form, low-
dimensional SDEs for the evolution of the order parameters:

Ων+1 = Ψ(Ων) (2.15)

Note that evolution equations eqs. (2.15) are stochastic because they depend explicitly on the random
variables {xν}ν∈[n].

Interpretation: Looking at the evolution equations, three types of terms appear:

ΨM ≡
γν
pd
Eνi λ?ρ, Ψ

(1)
Q ≡

γν
pd

(
Eνi λνj + Eνj λνi

)
, Ψ

(2)
Q ≡

γ2
ν

p2d
Eνi Eνj ||xν ||22 (2.16)

Note is that the prefactor of ΨM and Ψ
(1)
Q are the same, and different from Ψ

(2)
Q . Since, (Eνi λ?j , Eνi λνj , Eνi Eνj )

are O(1) quantities, this means these terms have different scaling with respect to γν/d. Moreover, it

can be shown that the deterministic component of (ΨM ,Ψ
(1)
Q ) act as an attractive drift encouraging

the alignement of W to W ?, while Ψ
(2)
Q is a repulsion on the weights W .

Indeed, the averaged terms Ψ̄M ≡ EΨM , Ψ̄Q ≡ EΨ
(1)
Q have a natural interpretation: they corre-

spond exactly to the terms coming from the gradient of the population risk in eq. (1.1):

∇wiR(W ) =
1

p
∇wiEx [Eix] (2.17)

Taking the dot product of the above with respect to the weights (w?ρ, wi) give precisely Ψ̄M , Ψ̄
(1)
Q .

2.3 Deterministic limit(s)

So far, we have done no approximation: the SDEs above are exact and valid for any (γν , p, k, d, n).
Now we discuss different limits where the evolution above simplifies.

5Which concentrates fast for d large.
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Figure 1: Population risk dynamics for the Saad & Solla scaling: p = 8, k = 4 with orthogonal
initialisation. Activation: σ(x) = erf(x/

√
2). Dots represent simulations (d = 1000), while solid lines

are obtained by integration of the ODEs given by eqs. (2.18).

Saad & Solla regime: Consider the case in which γν ≡ γ, p, k, n are fixed, O(1) numbers, and we
take the input dimension to be large d → ∞. Defining t = νδt with time-step δt = 1/d, we can show
that the order parameters concentrate, and the stochastic part of the SDE above is sub-leading in d.
This leads to the following deterministic ODE for the evolution of the order parameters:

Ṁρi(t) = Ψ̄M (P,M(t), Q(t)) =
γ

p
E(λ?,λ)∼N (0,Ω)

[
Eiλ?ρ

]
(2.18)

Q̇ij(t) = Ψ̄
(1)
Q (P,M(t), Q(t)) + Ψ̄

(2)
Q (P,M(t), Q(t))

=
γ

p
E(λ?,λ)∼N (0,Ω) [Eiλj + Ejλi] +

γ2

p
E(λ?,λ)∼N (0,Ω) [EiEj ] (2.19)

These equations have been first derived in 1995 by physicists David Saad and Sara Solla in [3], and
have been rigorously proven in [10, 11]. Crucially, in this regime we have a competition between an
attractive and a repulsive term, which can trap the dynamics for times t ∼ O(1). Indeed, in [10]
it has been shown analytically that even in a realisable setting, for different architectures such as
σ ∈ {relu, erf} the asymptotic might not recover W ? in t ∼ O(1), and one can get trapped in a plateau

R∞ − ∆ ∝ ∆γ, see Fig. 1. In particular, this plateau is due to the repulsion term Ψ̄
(2)
Q , which is

precisely the term not appearing in the population gradient flow dynamics. Indeed, this drift term is
an intrinsic high-dimensional correction for the population gradient flow dynamics.

Perfect learning regime: As we have seen above, the SGD dynamics can get trapped even if, a
priori, perfect prediction is possible. Can we actually improve on this? Recall our observation above:

the repulsive term Ψ̄
(2)
Q which hinders perfect learning has a different scaling with respect to the

attractive terms. Therefore, we might be able to get rid of this term by either: (a) overparametrising
pdd or (b) by choosing a fast decaying learning rate γ � d. Therefore, consider the case in which
these quantities scale with d:

p ∼ dκ, γ ∼ d−δ (2.20)

with k and n fixed O(1) numbers. Defining t = νδt with time-step:

δt =
γ

pd
∼ 1

d1+κ+δ
(2.21)
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(a) Population risk dynamics for κ = 0 and
δ = 1/2. Fixed noise ∆ = 10−3 and varying
d. Dots represent simulations, while the solid line
is obtained by integration of the ODEs given by
eqs. (2.22). The data are compatible with the
claim that as d → ∞ the curve converges to zero
population risk.

102 103
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10−4

R
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(b) Asymptotic population risk R∞−∆ from sim-
ulations (dots) as a function of d for different noise
levels under the scaling κ = 0 and δ = 1/2. The
fitted straight lines have slopes −0.458, −0.494,
−0.497, for ∆ = 10−4, 10−3, 10−2, respectively.

Figure 2: Network parameters: p = 8, k = 4 and orthogonal initialisation. Activation function:
σ(x) = erf(x/

√
2).

we can show that for κ > −δ, we the order parameters also concentrate, and the stochastic term
vanishes. The resulting continuous limit dynamics is given in this case by:

Ṁρi(t) = Ψ̄M (P,M(t), Q(t)) = E(λ?,λ)∼N (0,Ω)

[
Eiλ?ρ

]
(2.22)

Q̇ij(t) = Ψ̄
(1)
Q (P,M(t), Q(t)) = E(λ?,λ)∼N (0,Ω) [Eiλj + Ejλi] . (2.23)

This concentration result has been recently shown in [12]. Note that we have completely got rid of

Ψ̄
(2)
Q ! Therefore, in this regime one can achieve perfect, see Fig. 2 for a illustration. However, note that

there is no free lunch: since the time scale t = νδt, by decreasing the learning rate γ we effective require
more samples for a given time-step, so indeed it makes sense that by seeing more samples one can
reach better learning on a finite time horizon. The same is true for the overparametrisation. Note that
this result is consistent to the global convergence of overparametrised two-layer neural networks, and
provides a bridge between the classical results for narrow networks [3] and the mean-field works [5–8].

Note that a consequence of this result is that for κ = −δ we get exactly the same equations as in
the Saad and Solla regime where κ = δ = 0. Therefore, in this case the phenomenology is exactly as
in [3].

Bad learning regime: Although this is less interesting, we can also derive a deterministic limit in

a regime where the Ψ
(2)
Q term dominates the dynamics. This is given by choosing t = νδt with:

δt =
γ2

p2d
∼ 1

d1+2(κ+δ)
(2.24)

and taking d→∞ at fixed n. In this case, the resulting ODEs are simply:

Ṁρi(t) = 0 (2.25)

Q̇ij(t) = Ψ̄
(2)
Q (P,M(t), Q(t)) = E(λ?,λ)∼N (0,Ω) [EiEj ] . (2.26)

Since Ṁ = 0, there is no learning at all in this regime.
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(a) The phase diagram of SGD learning regimes for
two-layer neural networks in the high-dimensional
input layer limit d→∞. Eqs. (2.20) define proper
time scalings for each of the regions. Perfect learn-
ing region: κ + δ > 0. Plateau line: κ + δ = 0.
Bad learning region: −1/2 < κ+ δ < 0. No ODEs
region: κ+ δ < −1/2.
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(b) A solution of the ODEs in all regions of Figure
3a, with matching colors. Parameters κ = 0.301,
p = 8, k = 4, orthogonal initialisation. Noise: ∆ =
10−3. Activation function: σ(x) = erf(x/

√
2).

The time scaling is not uniform through the phase
diagram: ϑ = κ+ δ on green and blue regimes and
ϑ = 2(κ+δ) on the orange region. The green curve
decays as a power law to zero excess error.

Figure 3: Phase diagram (left) and typical behavior of the ODE in each regions (right).

2.4 Summary

Since physicists love phase diagrams, we can summarise our discussion (and a bit more) in a phase
diagram for the deterministic limit of the one-pass SGD dynamics, Fig. 3a.
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Learning in Neural Networks: The Hidden Manifold Model, Phys. Rev. X 10, 041044 - Published
3 December 2020.

[10] S. Goldt, M. Advani, A.M. Saxe, F. Krzakala, L. Zdeborová, Dynamics of stochastic gradient
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