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Nomenclature

Abbreviations

(c)GET (conditional) Gaussian equivalence theorem

(C)SQ (Correlational) Statistical query

(S)GD (Stochastic) Gradient descent

(s)RF (Spiked) Random features

AMP Approximate message massing

Eq(s). equation(s)

ERM Empirical risk minimisation

GMIM Gaussian multi-index model

i.i.d. Independent and identically distributed

KRR Kernel ridge regression

ML Machine learning

p.s.d. Positive semi-definite

RFRR Random features ridge regression

RMT Random matrix theory

Symbols

1d All-ones vector in dimension d

γd The d-dimensional standard normal probability density function.

E[· · · ] Expected value

I(A) Indicator function of a set A.
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Rd d-dimensional Euclidean space

N (µ,Σ) Multi-variate Gaussian distribution with mean µ and covariance Σ.

S+
r The cone of positive semi-definite symmetric matrices.

∥A∥F The Fröbenius norm of a matrix.

∥A∥op The operator norm of a matrix.

∥x∥p The ℓp norm of a vector or a sequence.

a ∧ b = min(a, b) The minimum between a, b ∈ R.

Id d× d identity matrix.

L2(µ) The space of square integrable functions with respect to the measure µ.

Lipd(L) The space of L-Lipschitz functions over Rd.



Preface

The non-French-speaking readers of this manuscript will sympathise with my first
thoughts upon discovering that I had to write a mémoire de recherche. Often used in its literary
sense in other languages, the prospect of writing a mémoire about one’s own research can
sound daunting to the scientifically minded. Behind every paper there is a story, and although
stories inhabit the same mental space as the ideas from which papers are made, they do not,
understandably, belong to the same written space. Nevertheless, the idea of recording the
research memories behind the research ideas discussed here grew irresistibly enticing. I do
not expect, however, that all readers will be interested in these memories. If you are among
them, I suggest skipping directly to the science in Chapter 1.

If I had to synthesise my research path thus far in a single word, this word would be
interdisciplinary. Trained as a high-energy theoretical physicist during my undergraduate and
master’s studies, I joined the Theory of Condensed Matter (TCM) group at the University of
Cambridge for my doctoral thesis in 2014. At the time, a mathematical duality connecting
two very different fields of physics — gravity and quantum field theory — was beginning to
make its way into condensed matter theory, with the promise that hard problems on one side
could be mapped to more tractable problems on the other. My supervisor, Antonio Miguel
García-García, was looking for a student with a high-energy background to engage with
this programme, and that’s how I crossed the street from the Department of Mathematics to
the Cavendish Laboratory.

Continuous exposure to condensed matter research during my TCM years grew into
an interest in statistical physics, and by the end of my PhD in 2018 I was determined to
move into this field. Casually googling for “postdoctoral positions in statistical physics” led me
to the webpage of Lenka Zdeborová, who was announcing a position at the crossroads of
statistical physics and machine learning. My first day of work in my new postdoc position
was at the Institut d’Études Scientifiques in Cargèse, where Lenka was organising, together
with Florent Krzakala, a conference “Statistical Physics and Machine Learning back together”.
My main recollection of this conference is the overwhelming feeling of watching a full-day
programme on topics I had barely heard of, but that I was supposed to work on in the weeks
to follow.
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Preface 12

I particularly remember being struck by how many problems fit within a single pos-
terior distribution: Stochastic Block Model, planted PCA, Z2 synchronisation, Restricted
Boltzmann Machine, Sherrington–Kirkpatrick model, Hopfield model, low-rank matrix
factorisation, etc. — making me strongly appreciate the universality of the statistical physics
approach. But as important as the science, it was on the beach of the institute that I first
met some of my future collaborators, such as Marylou Gabrié, Sebastian Goldt and Marc
Mézard, and some of my current colleagues at ENS, such as Giulio Biroli, Stéphane Mallat
and Guilhem Semerjian.

IPhT years (2018-2020) — My first two years of postdoc, from 2018–2020, focused on
studying non-convex inverse problems such as sparse PCA and phase retrieval. From a
probabilistic perspective, families of inverse problems can be classified by their factor graphs,
and the statistical physics approach provides tools to characterise the asymptotic properties of
the associated free energy (or, equivalently, the mutual information). There are not many factor
graphs for which these quantities can be explicitly computed. For this reason, Lenka and
I were interested in studying the modularity of this approach: given two factor graphs for
which the free energy is computable, can we compute the free energy of the composed factor
graph? Recent results at the time suggested a positive answer [Man+17; FRS18; Gab+18],
and what I was able to show is that these particular results follow from a general composability
rule, where the free energy of a composite graph can be systematically obtained from the
free energy of the individual factor graphs. This result was particularly relevant to the
emerging field of using pre-trained deep networks as priors to solve hard inverse problems,
also known as generative priors. Leveraging this result, we were able to show that random
deep generative priors were computationally more favourable than classically employed
compression schemes, such as sparse priors [Aub+19; Aub+20]. We presented our results
at both the main conference and the first Deep Inverse workshop, a workshop at NeurIPS
entirely dedicated to this problem.

The problem of composability of graphical models naturally led us to explore the same
question for the quenched disorder. Indeed, one of the major drawbacks of the statistical
physics approach is that it strongly relies on the randomness in the model,1 for instance in the
form of a random graph in the context of constraint satisfaction problems, or a random data
distribution in the context of learning. Understanding how to deal with more structured
disorder without breaking mathematical tractability was, and still is, an important question
in the field (c.f. this excellent review by Marc Mézard on the topic [Méz24]). Sebastian
Goldt, who was also a postdoc in Lenka’s group at the time, was exploring this question
in the context of one-pass SGD. Together with Lenka, Marc and Florent, he introduced a
random model for data generated from a latent space: the Hidden Manifold Model (HMM)

1Also known as the disorder in the statistical physics parlance.

https://deep-inverse.org/2019.html
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[Gol+20]. I began working on a replica computation for this model during a one-month visit
to the Kavli Institute of Theoretical Physics (KITP) for a programme on machine learning and
physics, where I shared a kitchen with Sebastian and had many great discussions between
cooking and dinner.2 Solving this problem led us to the notion of Gaussian universality: the
idea that since data is only seen by these models through a low-dimensional projection,3

only lower order statistics matter in the asymptotic limit [Ger+20; Gol+22]. Exploring the
extents and limitations of Gaussian universality permeated a lot of my subsequent research,
which will be discussed in depth in Chapter 2.

EPFL years (2020-2022) — In September 2020, after enduring a long COVID lockdown
in a small and damp Parisian apartment, Florent Krzakala proposed that I move with him to
Lausanne and join the newly established Information, Learning & Physics Laboratory at EPFL.
I have fond memories of that first autumn in Lausanne, which I spent helping Florent set
up the new lab — in particular choosing a coffee machine — and finishing some ongoing
work I had started in Paris on the extent to which the asymptotic formulas we had derived
capture the behaviour of learning curves for real data [Gol+22; Lou+21a]. The observation
that sometimes the asymptotic formulas extended well beyond Gaussian data led me to think
about universality, and the extent to which it holds as a function of the task. With Gabriele
Sicuro, we had derived formulas for the Gaussian mixture model [Lou+21b], which became
a playground to study the limitations of universality [Ger+24; Pes+23].

This was also the period when I first learned about the source & capacity literature — or
scaling laws, as they are referred to nowadays. At the time, there was an ongoing discussion
between the groups of Matthieu Wyart at EPFL and Cengiz Pehlevan at Harvard about the
rates of convergence of kernel methods they had derived in concurrent works [SGW20a;
BCP20a]. Loucas-Pillaud Vivien, who was moving from Paris to EPFL after a PhD with
Alessandro Rudi and Francis Bach, attended the seminars we jointly organised with Matthieu
Wyart’s group to present his work on this topic [PRB18]. As he introduced the classical
results of Caponetto and De Vito on the optimal rates for kernel ridge regression [CD07],
we realised (after some annoying notation translation) that these rates were faster than those
in [SGW20a; BCP20a], apparently contradicting optimality. Florent and Lenka had just
bought a pizza stone for their new Swiss barbecue grill, and I was experimenting with
Neapolitan-style pizza recipes. So we made Loucas an irresistible invitation: all you can eat
pizza in exchange for a summary of the kernel source & capacity literature. Together with
Hugo Cui, who had just started his PhD at EPFL, we came to understand that the puzzle was
due to the fact that the Pehlevan and Wyart result held in a data-limited regime where the
rates are effectively noiseless, and that there exists a crossover to the rates of Caponetto and

2Those who have been to the KITP will probably also have fond memories of the blackboards in the kitchen
of the Munger residence.

3Also known as the local fields.

https://www.kitp.ucsb.edu/activities/machine19
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De Vito as the amount of data increases beyond a certain threshold related to the noise level
in the problem [Cui+21]. We also found the existence of new rates and associated crossovers,
such as to plateau regimes which are of interest to the neural scaling law literature [Kap+20;
Bah+24; MRS22].

The year 2021 also marked the beginning of my co-supervision of students, starting
with the first cohort of Master’s students at IdePHICS, Luca Pesce and Alessandro Pacco,
followed by Lucas Clarté and Luca Arnaboldi (it became something of a tradition that many
students were named Luca). In the same year, we welcomed Rodrigo Veiga, then a PhD
student at the University of São Paulo, for a one-year research visit to IdePHICS. At the
time, I had not worked on (S)GD and regarded this as an important gap in my toolbox. In
brainstorming with Florent about possible projects for Rodrigo, I proposed to revisit the
high-dimensional analysis of two-layer neural networks pioneered by David Saad and Sara
Solla in the 1990s [SS95c; SS95b; SS95a], with the aim of extending it to the infinite-width
limit and, in particular, bridging it with recent advances on the mean-field limit [CB18;
MMN18; SS20; RV22]. Together with Ludovic Stéphan, who joined IdePHICS also as a
postdoc later in 2021, we showed that the ODE description in terms of summary statistics
could be derived in different complementary regimes, with the only structural difference
in the equations being a single term proportional to the ratio between the learning rate
and the network width [Vei+22]. This additional term, stemming from the variance of
the SGD noise at finite learning rates, accounted for the asymptotic plateau observed at
long times [SS96]. Francis Bach later pointed out to me that this plateau was the variance
of the stationary distribution of SGD at finite learning rates, and had been characterised
non-asymptotically in the least-squares settig [DB16]. A limitation of our first work was
that the summary statistics were matrices whose size scaled with the width of the network.
In a follow-up work with Luca Arnaboldi, we were able to simplify the equations further in
the joint large-width and high-dimensional limit, obtaining a PDE for the evolution of the
summary statistics that is consistent with the mean-field description [Arn+23]. Concurrently,
Raphael Berthier, Andrea Montanari, and Kangjie Zhou reached the same conclusion from
the opposite direction, by reducing the mean-field PDE in the high-dimensional limit to an
ODE. Taken together, these results establish that the two limits commute [BMZ24].

Towards the end of my postdoc at EPFL in 2022, I began to take a strong interest in
feature learning. It started in July 2021, when Denny Wu, then a PhD student in Toronto,
wrote to me with questions about the scope of our results in [Lou+21a]. In particular, he
wanted to know whether our universality results would still hold for a random features
model in which the first-layer weights are correlated with the target directions — a setting
motivated by gradient-step corrections to the initialisation of two-layer neural networks. In
April 2022, Denny extended the Gaussian universality results and derived exact asymptotics
for a random features model with trained weights in the Θ(1) learning-rate regime [Ba+22].
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His analysis showed that in this regime, feature-learning corrections did not increase the
expressivity of the model, which would instead require extensive learning rates. This result
sparked my own interest in whether the asymptotic analysis of [Lou+21a] could be extended
to the feature-learning regime. I invited Denny to EPFL in June 2022 to present his findings.
One of Denny’s result was that a single large gradient step is asymptotically equivalent to
adding a spike correlated with the target weights. I realised that this was closely related to
the Gaussian mixture model we had previously studied, which suggested that the large-step
regime might also be analytically tractable. Excited by this connection, I proposed it as an
open problem at the Les Houches 2022 summer school.

The ENS years (2022-to date) — I moved to my current position at the Département
d’Informatique of ENS in October 2022. I dedicated my first months to the problem of feature
learning together with Yatin Dandi, who had just started his PhD at IdePHICS. Motivated
by the simpler setting of random features on a Gaussian mixture distribution, our first step
was to generalise a proof scheme by Andrea Montanari and Basil Saeed [MS22] to mixture
distributions, leading to a conditional form of Gaussian universality [Dan+23]. This advance
was instrumental for addressing the one-step problem, as it established that whenever the
non-Gaussian component of a high-dimensional distribution is low-dimensional (e.g. a
spike), it can be factored out and treated separately. Building on this principle, which we
termed conditional Gaussian equivalence, we progressively solved the problem of characterising
large-step corrections to random features: first by deriving upper bounds [Dan+24b], then
through a replica-based analysis [Cui+24], and finally with a rigorous random matrix theory
proof [Dan+25]. These results precisely characterised feature learning after a large gradient
step and clarified its effect on the performance. They will be discussed in detail in chapter 3.

In parallel, I began engaging with my new colleagues at ENS. In particular, Florentin
Guth, then a PhD student with Stéphane Mallat, introduced me to their numerical ex-
periments on rainbow networks — random networks with weights matching the statistics
of trained ones — which surprisingly retained a large fraction of training performance
[Gut+24]. Motivated by this observation, we extended the analysis of random features to
the deep, correlated case in collaboration with Hugo Cui, Daniil Dmitriev, and Dominik
Schröder, and demonstrated that in the proportional asymptotics the generalisation error of
Gaussian rainbow networks is inherently limited [Sch+23; Sch+24b].

While the co-supervision of PhD students I started following during my postdoc at
EPFL ensured the continuity of my collaborations with Florent and Lenka, I began to
supervise my first full PhD students in Paris: Leonardo Defilippis in 2023, Arie Wortsmann
in 2024, Clément Loup-Forest and Luigi Fogliani (co-supervised with Marylou Gabrié) in
2025. With Leonardo, I relaunched my collaboration with Gabriele Sicuro on heavy-tailed
high-dimensional distributions [Ado+24], and initiated a project with Theodor Misiakiewicz

https://leshouches2022.github.io/
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on a non-asymptotic analysis of random features [DLM24]. This work rigorously established
the exact scaling laws of non-linear RF models, and showed that a previous result of Rudi
and Rosasco on the minimal number of features required to achieve kernel minimax rates
was not tight [RR17].

In the years that followed, I developed several other collaborations worth mentioning,
though their results will not be discussed in detail in this manuscript. During a huddle
organised by Jean Barbier, Manuel Saenz, Pragya Sur, and Subhabrata Sen in Trieste in
the summer of 2023, Zhou Fan proposed using DMFT to analyse an adaptive Langevin
algorithm employed in empirical Bayes methods. This led to fuitful collaboration with Zhou,
Yandi Shen, Justin Ko, and Yue Lu [Fan+25a; Fan+25b], where I learned a lot about the
challenges of mathematically formalising some ideas which are natural to physicists (and
about Sichuanese food, too). Also in 2023, at a workshop in Tübingen, Marylou Gabrié
(then at École Polytechnique) introduced me to the problem of model collapse in variational
inference. Together we proposed an M2 project on the topic in 2024 and developed an
analysis in a Gaussian mixture setting, showing that mode collapse corresponds to local
minima of the variational inference objective that can trap the dynamics depending on the
initialisation [SGL25]. With Luigi Fogliani, we are now investigating mitigation strategies
for mode collapse. Finally, during their one-year visit to ENS, I worked with Julia Kempe
and Nikos Tsilivis to compare their uniform convergence bounds for robust regression
with exact asymptotic results I had derived with Matteo Vilucchio [Tan+25], showing that
regularisation with respect to the dual norm of the attack is not always optimal in data-scarce
regimes [Vil+24].

Rather than attempting to summarise all of my scientific work since 2018, I have chosen
to focus on a single line of research that I believe is representative of my contributions over
the past seven years, while also providing a coherent and compelling narrative. I have sought
to present the discussion in an intuitive manner — retaining the mathematical detail necessary
to understand the results, but without technicalities that might obscure the main message.
Accordingly, most theorems are stated informally, with references to the original works for
readers wishing a deeper treatment. I hope readers will find the account as engaging to read
as it was to write.

Paris, 16th of September 2025.



1 | Introduction and overview

This manuscript discusses the research I have conducted since the end of my PhD. The
common denominator of my different research lines are the challenges posed by the study
of probability in high-dimensional spaces, particularly present in problems from the fields
of computer science, statistics, signal processing and machine learning. Due to a choice for
coherence and conciseness, the next chapters of this manuscript will focus mostly on one of
my research lines, concerning the theory of generalisation and adaptativity in two-layer
neural networks.

Although this line spans a considerable part of my research activity since the end of
my PhD, it unfortunately leaves out both old and recent results which would deserve a
manuscript of its own, and that showcase the diversity of my research interests. For instance,
my research lines on uncertainty quantification [Cla+23c; Cla+23b; Cla+23a; Cla+24] and
robustness robustness [Tan+25; Vil+24; VZL25] were left out, as well as earlier works on
statistical-to-computational gaps in inference problems [Aub+19; Aub+20; Mai+20; Pes+22]
and scaling limits of SGD for non-convex optimisation [Vei+22; Arn+23; Arn+24c; Arn+24a;
Arn+25]. I refer the reader to the list of publications above for a complete account of my
research since the end of my PhD.

The rest of this introduction sets the scientific context for what follows.

1.1 Why Statistical Physics?

A natural question for an unfamiliar reader encountering the title of this manuscript for the
first time is: what does physics have to do with neural networks — or, more broadly — with
machine learning? Given the centrality of this connection to what follows, it is appropriate to
begin by addressing this question directly.

Statistical physics is the branch of physics concerned with understanding how the macro-
scopic properties of materials — such as temperature, pressure, or magnetisation — emerge
from the microscopic interactions of their underlying constituents, such as particles, atoms,
or molecules, often referred to as degrees of freedom. Motivated by the central role of thermo-
dynamics in the first industrial revolution, statistical physics was born from the endeavour to
explain how the principles of thermodynamics emerge from the fundamental laws of physics

17



1.1 Why Statistical Physics? 18

at the microscopic scale. At its core lies the idea of regarding the physical state of a collection
of particles — referred to as a configuration — as a sample drawn from a probability distri-
bution defined over the set of all possible configurations, the configuration space.4 From this
perspective, a macroscopic property of the system is simply a sample statistic. Starting from
the seminal works of Ludwig E. Boltzmann (1844-1906) and Josiah W. Gibbs (1839-1903)
[Bol77; Gib02], physicists have developed mathematical tools to study the central question of
statistical physics: how to characterise the statistical properties of this distribution when the number
of degrees of freedom is large?.5

Mathematically, this problem is far from trivial. Early probability theory, as developed
by Bernoulli and Laplace, focused primarily on the limiting behaviour of independent and
identically distributed random variables, leading to classical results such as the law of large
numbers and the central limit theorem. Statistical physics, by contrast, placed at its core
the study of probability measures on systems of interacting particles, which mathematically
corresponds to analysing limits of sequences of probability spaces rather than simple product
measures. In this sense, the works of physicists such as J.W. Gibbs, L.E. Boltzmann, and A.
Einstein laid the foundations for many concepts later formalised within modern probability
theory, including stochastic processes [Lév40], concentration of measure [Led01], large
deviations [Var66], and random matrix theory [Wig93].

Given the central role played by probability in the framing of machine learning theory,
the connection between statistical physics and learning theory should thus come at no surprise
to the reader. Indeed, the connection between these two fields is far from recent, and while
an extensive historical account would take us way beyond the scope of this manuscript, I
believe it is worth revisiting a few of the landmark works that laid ground for this connection.

Perhaps the first and most influential work to draw a precise analogy between statistical
physics and optimisation was the paper by S. Kirkpatrick, C.D. Gelatti, and M.P. Vecchi
introducing the Simulated Annealing algorithm [KGV83]. Building on the analogy between
local algorithms and the relaxation dynamics of physical systems, the authors proposed an
algorithm inspired by the physical process of annealing — the controlled cooling of a liquid
to produce crystals with desired properties:

“There is a deep and useful connection between statistical mechanics (the behavior of
systems with many degrees of freedom in thermal equilibrium at a finite temperature) and
multivariate or combinatorial optimization (finding the minimum of a given function
depending on many parameters). A detailed analogy with annealing in solids provides a
framework for optimization of the properties of very large and complex systems. This
connection to statistical mechanics exposes new information and provides an unfamiliar
perspective on traditional optimization problems and methods.”

4In probability language, the configuration space is the sample space, and a configuration is an event.
5The number of particles in a typical physical system, such as the number of H2O molecules in a gram of

water, is of the order of the Avogadro number 1023, an overwhelmingly large number.
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Beyond the far-reaching impact of simulated annealing as a versatile algorithm for com-
binatorial optimisation, an equally important conceptual contribution of this work was
to establish a link between computational complexity and the rugged energy landscapes
characteristic of systems in which many variables must simultaneously satisfy competing
constraints, known as frustration in physics [KT85].

One year earlier, John Hopfield, a physicist working in neuroscience, had drawn on
a similar analogy to propose a model of associative memory in the brain [Hop82]. His
central idea was to interpret stable memories as local minima of a complex energy landscape
generated by the collective dynamics of neurons, which could be retrieved through a simple
and biologically plausible learning rule proposed by neuroscientists, the Hebb rule [Heb49].
Hopfield’s work was the first to establish a systematic connection between statistical physics
and biological neural networks, a contribution later recognised by the award of the Nobel
Prize in Physics in 2024. The Hopfield model, as it became known, soon attracted the attention
of the statistical physics community. In 1985, Daniel Amit, Hanoch Gutfreund, and Haim
Sompolinsky adapted tools developed only a few years earlier in the study of spin glasses
to demonstrate the existence of a transition between a phase in which stored patterns in a
Hopfield network can be successfully retrieved and a phase in which the network fails to
recall them [AGS85].

The years following Hopfield’s work witnessed a steady growth of interest among
theoretical physicists in biological neural networks. It was soon recognised that the same set
of ideas and tools could also be applied to artificial neural networks. This was pioneered by
Elisabeth Gardner and Bernard Derrida, who analysed how many random points a single-
layer neural network6 could correctly classify within a given margin7, generalising an earlier
result by information theorist Thomas M. Cover, obtained using random combinatorics
[Cov65]. Early contributions from Gardner, Derrida, Amit, Gutfreund, and Sompolinsky,
among others, demonstrated that the connection between statistical physics and neural
networks was not merely conceptual: the tools developed within statistical physics could be
adapted to these problems, yielding a quantitative understanding of questions relevant to
learning theory.

The period following Gardner and Derrida’s work was marked by intense activity in
what came to be known as the statistical physics of learning community. It is interesting to note
that this period of increasing interest of physicists for neural networks is coincide with what
is known in the deep learning folklore as the “neural network winter”, a period during which
research activity on neural networks within computer science and engineering departments
was at a low point [Hin19; LeC19a; Ben22]. In his memoir, Yann Le Cun — a pioneer
in the development of convolutional neural networks — recalls attending a conference on

6Introduced by Frank Rosenblatt in 1958, this was known at the time as the perceptron.
7Also known the the storage capacity problem.
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neural networks at the École de Physique des Houches in 1985 [LeC19b]:

“Ma vie professionnelle bascule réellement en février 1985 lors d’un symposium aux
Houches, dans les Alpes. Je rencontre là-bas la fine fleur de la recherche internationale
qui s’intéresse aux réseaux de neurones : physiciens, ingénieurs, mathématiciens, neu-
robiologistes, psychologues, et notamment des membres d’un tout nouveau groupe de
recherche en réseaux de neurones qui s’est formé aux Bell Labs, un lieu mythique pour
la communauté scientifique. Grâce aux liens que je noue aux Houches, je finirai par être
embauché dans ce groupe trois ans plus tard.”.

This testimony illustrates the rich exchange of ideas between the diverse communities inter-
ested in neural networks at the time, and highlights the subject’s inherently multidisciplinary
history. Such exchanges bore concrete fruit on both sides, as recalled by Isabelle Guyon —
a pioneer in the development of the support vector machine (SVM) algorithm — who also
attended the 1985 Les Houches school [Guy16]:

“I benchmarked neural networks against kernel methods with my Ph.D advisors Gerard
Dreyfus and Leon Personnaz. The same year, two physicists working close-by (Marc
Mézard & Werner Krauth) published a paper on an optimal margin algorithm called
’minover,’ which attracted my attention... but it was not until I joined Bell Labs that I
put things together and we created support vector machines.”.

The late 1980s also saw the launch of what would become the leading venue for machine
learning research: the Conference on Neural Information Processing Systems. The first proceed-
ings, published by the American Institute of Physics [And87], provide a clear testimony to
the multidisciplinary character of the field in its early days, with contributions ranging from
neuroscience and statistical physics to computer science, engineering, and applied mathe-
matics. A direct thread connects the early developments described here and the research
currently carried out at the crossroads of these fields, but a comprehensive account of the
statistical physics of learning from the 1990s to the present lies well beyond the scope of this
manuscript.

Taken together, the ideas discussed in this section show that the dialogue between
statistical physics and machine learning is neither superficial nor recent. At their core, both
fields confront the challenge of understanding the statistical properties of complex, high-
dimensional systems — problems that naturally call for probabilistic methods. It is therefore
no surprise that the ideas developed in the context of spin glasses found fertile ground in
computer science, serving both as a conceptual framework for describing complexity and as
a source of technical tools to analyse it. The fruits of this connection are far from abstract:
they have inspired concrete algorithmic innovations such as simulated annealing and support
vector machines. Historically, neural network theory itself emerged at the confluence of
different communities, with physicists, computer scientists, and neuroscientists shaping a
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shared body of ideas that deeply marked its early trajectory, and that continue to contribute
to its development.

As the following sections will show, the work presented in this manuscript forms part of
this ongoing shared endeavour.

1.2 The case for a typical-case analysis

This manuscript is primarily concerned with the question of generalisation in neural networks.
Generalisation refers to how such models learn patterns from data and leverage them to predict
the behaviour of data they have not previously encountered. Also known as out-of-sample
prediction, it is a problem fundamental not only to machine learning but to statistics more
broadly. Before turning to neural networks specifically, it is worth providing a precise
mathematical formulation of this question and explaining why it is inherently challenging.
Since the greater part of this manuscript is devoted to supervised learning, we frame the
discussion within this setting for concreteness.

Consider a supervised learning task with training data D = {(xi, yi) ∈ Rd × Y : i ∈ [n]},
drawn i.i.d. from a joint distribution p(x, y) over Rd × Y . Throughout this manuscript, we
will mainly focus on regression (Y = R) and binary classification (Y = {−1,+1}) tasks.
Given a loss function ℓ : Y × Y → R+, we define the population risk as

R(f) = E [ℓ(y, f(x))] , (1.1)

The question of generalisation consists of finding an estimator8 f̂ : Rd → Y such that R(f̂) is
as small as possible.9 This can be made more precise by defining the Bayes predictor

f⋆(x) ∈ argmin
ŷ∈Y

E[ℓ(y, ŷ)|X = x] (1.2)

and the associated Bayes risk R⋆ = inf f̂ R(f̂) = R(f⋆), which is the minimally achievable
risk.10 For instance, for the square loss ℓ(y, ŷ) = (y− ŷ)2 the Bayes predictor is the conditional
expectation f⋆(x) = E[y|x]. Therefore, the problem of generalisation can be reframed as
achieving a risk close to the Bayes risk. If the statistician had access to the data distribution p,
this would be a simple problem: just solve eq. (1.2). The challenge arises because p is only
accessible through the training data D. Therefore, the question of generalisation is really
about how large n should be in order to achieve the Bayes risk.

Without further structure, this problem is ill-posed, as tasks of arbitrary complexity can

8That is, a measurable function of the training data.
9Note that R(f̂) is itself a random variable, since it depends on the training data. This is therefore an

inherently probabilistic statement, often phrased either in expectation or with high probability over D.
10Note that even though f⋆ might not be unique, R⋆ is.



1.2 The case for a typical-case analysis 22

be constructed. To obtain a meaningful mathematical formulation, it is necessary to impose
restrictions on the two underlying objects that define the problem:

(a) The data distribution p, or equivalently, the Bayes predictor f⋆ and the marginals px.

(b) The predictor f̂ , also known as the hypothesis.

It is useful to discuss in some detail the role played by these two components in learning
theory.

1.2.1 The data distribution

A classical first approach in learning theory is to consider regularity conditions over the Bayes
predictor. For instance, under uniform bounded covariates,11 one can show the following
lower-bound:

Theorem 1.2.1 ([Tsy08], informal). Assume xi ∼ Unif([0, 1]d) and that yi = f⋆(xi) + εi

with E[εi] = 0, E[ε2i ] <∞ independently of xi. Then:

inf
f̂

sup
f⋆∈Lip(1)

E
[(
f̂(x)− f⋆(x)

)2]
≳ n− 2

2+d , (1.3)

where the infimum is taken over all measurable functions of the training data and the
expectation is over both the training data D and the covariate x ∼ Unif([0, 1]d).

Theorem 1.2.1 states that the best predictor requires at least n(ϵ) ≳ ϵ−
2+d
2 to approximate

the hardest regular Bayes predictor f⋆ to precision δ in squared error. Known as the curse of
dimensionality,12 this exponential dependency in the data dimension implies a computational
bottleneck for moderate d, as even storing the data becomes prohibitive.

While fundamental, the minimax theorem 1.2.1 is at odds with the daily practice of deep
learning, where massive neural networks are trained to achieve low risk on massive data sets.
This discrepancy highlights two shortcomings of this result: First, regularity might not be
enough, as real data often contains stronger structural and geometrical properties. Second,
this is a worst-case statement about learning the hardest possible function in the class. For
most standard tasks, such as image classification, real data is not adversarial.13

Taken together, these considerations suggest the need for more structured, probabilistic
models of data in the study of machine learning theory.

11The same lower-bound hold for fixed bounded covariates.
12This terminology was introduced by Richard Bellman in [BCC57] to describe a pervasive difficulty

underlying many optimisation problems in computer science.
13Problems where an adversarial attacker deliberately poisons the data is a subject of its own in learning

theory, but is beyond the scope of this manuscript.
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1.2.2 The hypothesis class

Complementary to the discussion above is the fact that we are typically not interested in
the best predictor. Not only would this require full knowledge of the data distribution p,
but taking the infimum over all measurable functions is also computationally intractable.
Instead, most learning frameworks restrict attention to a smaller class of predictors. The most
common approach in machine learning practice is to consider the empirical risk minimiser
(ERM):

f̂ ∈ argmin
f∈F

[
R̂n(f) :=

1

n

n∑
i=1

ℓ (yi, f(xi))

]
(1.4)

where the optimisation is carried out over a subclass of measurable functions F , often
parametric, F = {fθ : Rd → Y : θ ∈ Θ}, referred to as the hypothesis class. This procedure
introduces two further challenges. First, the choice of hypothesis class typically translates a
preference for certain types of functions, known as an inductive bias. Second, even if the risk
is convex in f ∈ F (for convex losses), it need not be convex in the parameters θ ∈ Θ. As
a result, different optimisation procedures for solving the ERM problem in eq. (1.4) may
converge to different solutions with potentially different risks, a phenomenon referred to as
implicit (algorithmic) bias [Sou+18].

To make this more concrete, consider a parametric hypothesis class together with a
learning algorithm θ̂ = A(D) ∈ Θ. The excess risk can then be decomposed as

R(θ̂)−R⋆ =
[
R(θ̂)− R̂n(θ̂)

]
−
[
R̂n(θ⋆)− R̂n(θ̂)

]
−
[
R(θ⋆)− R̂n(θ⋆)

]
(1.5)

where θ⋆ ∈ infθ∈ΘR(θ), and we write R(θ) = R(fθ) by abuse of notation. The last term in
this decomposition is simply the difference between the empirical mean and the expectation
of i.i.d. random variables, which vanishes at rate O(n−1/2) by the law of large numbers.
The second term is an optimisation error: it quantifies how well the algorithm θ̂ = A(D)

succeeds in minimising the empirical risk R̂n. The first term is the generalisation gap. While
superficially similar to the last term, there is a crucial difference: both the estimator θ̂ and
the empirical risk R̂n depend on the same training data D, making R̂n(θ̂) a biased estimator
of R(θ̂). Controlling its concentration therefore requires a more refined characterisation
of θ̂. Instead, the standard approach in learning theory is to control the generalisation gap
uniformly over the hypothesis class, in terms of its complexity. A classical result is the
following:

Theorem 1.2.2 ([BM02], informal). Assume ℓ(y, ·) is bounded.14 Then, with probability

14This can be relaxed under assumptions on the data distribution.
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1− δ over the training data,

∀f ∈ F , R(f)− R̂n(f) ≤ 2R̂n(F) +

√
8 log 2/δ

n
(1.6)

where R(F) is the (empirical) Radamacher complexity of the hypothesis class F :

R̂n(F) = E

[
sup
f∈F

2

n

n∑
i=1

σiℓ (yi, f(xi))
∣∣D] (1.7)

where σi ∼ Unif({−1,+1}) i.i.d.

As the name suggests, R̂n measures the complexity of F . For example, if F is finite
then R̂n ≤

√
log |F|/n, while if F = {f(x; θ) = ⟨θ, x⟩ : ||θ||2 ≤ R} with ||x||2 ≤ 1, then

R̂n ≤ R/√n. Although mathematically sound, this bound again falls short in answering
questions arising in the deep learning practice, such as when and how overparametrised
networks achieve small excess risk. For instance, in parametric classes the Rademacher
complexity typically scales with the size of the parameter space, yielding vacuous bounds
in the overparametrised regime [Zha+16]. As will be discussed in detail in Chapter 2, even
simple linear models for which R̂n = O(

√
d/n) can have low excess risk in the d < n regime

while achieving R̂n = 0, a phenomenon known as benign overfifting [Bar+20]. As with the
minimax lower bound in theorem 1.2.1, this limitation stems from the broad nature of
the assumptions: the result is required to hold uniformly over arbitrary function classes,
independently of the data distribution. This is, once again, a worst-case guarantee.

A similar difficulty, which we mention here only en passant, arises for the optimisation
term in eq. (1.5). In 1988, Avrim Blum and Ronald Rivest [BR88] showed that even for a
very simple architecture — a two-layer neural network with only three linear threshold
nodes — deciding whether weights exist that fit training data drawn from a carefully
chosen distribution is NP-complete. In other words, exactly minimising the empirical risk is
computationally intractable in the worst case. This highlights a parallel with generalisation:
worst-case guarantees, while mathematically rigorous, often yield results that are either too
broad to be informative (in generalisation) or too demanding to be computationally feasible
(in optimisation).

1.2.3 A typical-case point of view

The discussion above illustrates that broad, data-agnostic worst-case approaches to learning
theory fall short of addressing the question of generalisation in the context of modern
practice. Over the past decade, different mathematical approaches have emerged to tackle
this challenge at a finer level. This area, loosely referred to as deep learning theory, is diverse,
encompassing methods ranging from PAC-Bayes bounds to exact asymptotics. Despite this
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heterogeneity, the field is unified by a shared recognition: genuine progress in understanding
both the successes and the limitations of neural networks requires incorporating detailed
information about the data distribution, the network architecture, and the descent-based
optimisation algorithms used for training.

The results discussed in this manuscript will adopt a perspective known as typical-case
analysis. Unlike worst-case analysis, which seeks guarantees valid for the most adverse
instance of a problem, the typical-case approach aims to characterise the behaviour of typical
instances. The notion of a typical instance is distribution specific, and therefore requires and
therefore requires positing an explicit generative model for the data. Within this framework,
the objective is to derive sharp predictions for quantities of interest — such as the risk or the
convergence rate of a training algorithm — under the chosen distribution.

But what is a reasonable model for “typical data”? There is no consensual answer to this
question. As motivated in Section 1.1, we approach it here as a complex systems problem,
adopting a bottom-up perspective natural to statistical physics and to science more broadly.
Our strategy is to model data from simple, mathematically tractable building blocks that
encode the inductive biases we expect natural data to exhibit. Although necessarily simplistic,
such models are intended to capture aspects of the phenomenology observed — at a certain
level of granularity — when training neural networks on real data. Although inevitably
simplified — much like thermodynamics is a coarse description of the inner workings of a
refrigerator — these models provide a foundation from which progressively finer and more
realistic descriptions can be developed.

1.3 Preliminaries

As the title suggests, our focus in this manuscript will be in studying the class of fully-
connected two-layer neural networks of width p:

Fp =

{
f (x;W, a) =

p∑
j=1

ajσ (⟨wj, x⟩) : aj ∈ R, wj ∈ Rd

}
(1.8)

where aj, wj are the trainable parameters, known as first- and second-layer weights, respectively
and σ : R → R denotes is a real-valued function, known as the activation function. Popular
examples are the rectified linear unit (ReLU) σ(t) = max(0, t) and the sigmoid σ(t) = (1+e−t)−1.
In the context of binary classification, f(x; θ) parametrises the scores, with a decoding function
d : R → {−1,+1} being applied for prediction (e.g. d(t) = sign(t) for Y = {−1,+1}).
Given training data D = {(xi, yi) ∈ Rd × Y : i ∈ [n]}, the empirical risk minimisation in
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eq. (1.4) therefore reads:

min
(W,a)∈Rp(d+1)

1

n

n∑
i=1

ℓ (yi, f(xi;W, a)) + r(W, a) (1.9)

where r is a regulariser, often added to impose a constraint on the weights. A popular example
is weight decay, where one penalises the ℓ2 norm of the weights: r(a,W ) = λa||a||22+λW ||W ||F
with λa, λW ≥ 0. The loss function is typically a convex function of the second argument,
and with the most common examples being the squared loss ℓ(y, t) = (y − t)2 for regression
(Y = R) and the logistic loss ℓ(y, t) = log(1 + e−yt) for binary classification (Y = {−1,+1}).

1.3.1 Multi-index functions

In the spirit of the discussion in Section 1.2.3, one may ask: what constitutes a meaningful
class of tasks for studying the typical properties of the learning problem in eq. (1.9)? A natural
choice for typical-case analysis is a family of functions where the difficulty of learning with
a given hypothesis class can be tuned. In other words, the task should be neither too simple,
which would be trivially learned, nor too complex, which would bring the analysis back to a
worst-case type of scenario.

A systematic way to achieve this is through the teacher–student framework,15 in which
the functional relationship between covariates and labels is generated, up to noise, by a
model drawn from the same hypothesis class under analysis. Formally, this corresponds to a
decomposition of the joint distribution p(x, y) = p(y|x)p(x),16 where the likelihood takes
the form p(y|x) = p(y|f⋆(x)) for some f⋆ ∈ F , referred to as the teacher or target function.
In statistical terminology, this ensures that the task is well-specified, i.e. that the hypothesis
class is expressive enough to learn the target. More recently, the terminology has also
been applied in broader, misspecified settings to denote any generative model of the form
p(x, y) = p(y|f⋆(x))p(x) with f⋆ ∈ F⋆ drawn from a different class of functions F⋆ ̸= F . A
popular example in the context of two-layer neural networks is to take an additive noise
model yi = f⋆(xi) + εi with the teacher f⋆ itself given by two-layer neural network of
smaller width r < p i.e., f⋆ ∈ Fr. This allows, for instance, to study how overparametrisation
influences learning.17

As we will argue, the class of multi-index functions offers a natural and effective testbed
for a typical-case analysis of two-layer neural networks.

15Although the idea is natural and long-standing in statistics, to my knowledge the “teacher–student”
terminology was first introduced by Elisabeth Gardner in [GD89].

16The complementary decomposition p(x, y) = p(x|y)p(y) is also a useful source of models, particularly in
classification tasks, where it corresponds to mixture distributions.

17In this case, both teacher and student may be viewed as belonging to the broader class of two-layer
networks of arbitrary width, F2lnn = ∪p≥1Fp.
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Definition 1.3.1 (Multi-index function). Let W ∈ Rr×d denote a matrix with rankW =

r ≤ d. A multi-index function f : Rd → R is defined as:

f(x) = g (Wx) (1.10)

where g : Rr → R is a non-linear function known as the link function. The rows wk ∈ Rd

with k ∈ [r] are known as the indices. In particular, when r = 1 we say f is a single-index
function.

Remark 1.3.1 (Random link function). A common variation consists of allowing g to be
a (possibly) stochastic function. In this case, we denote y ∼ Py(y|Wx), where Py denote
the model likelihood. Note that the case of a deterministic g is a particular case given by
Py(y|Wx) = δ (y − g(Wx)).

Multi-index models are classical in statistics, tracing back to the work of George Box
and David Cox on how data of data can be transformed to yield a linear dependence
(corresponding to g−1) [BC64; BD81]. They also encompass and extend a range of semi-
parametric methods, such as generalised linear models [NW72] and basis pursuit regression
(corresponding to a factorised form g(z) =

∑
k∈[r] gk(zk)) [FS81].

Conceptually, the class of multi-index functions encode the inductive bias that the relevant
directions for prediction depend only on a low-dimensional subspace of the covariates x ∈ Rd.
This makes it an appealing generative model for high-dimensional data. Indeed, this inductive
bias is often raised as a common explanation for why models can generalise when trained
with high-dimensional data despite the curse of dimensionality, also known as the manifold
hypothesis [TSL00].

Note that a width-p two-layer neural network implements a particular index-p function
with link function g(z) =

∑
k∈[p] akσ(zk). Therefore, it also encompasses the teacher-student

setting as a particular example. On the other hand, it is a richer class, containing other
popular functions studied in the literature.

Example 1.3.1. Many classical target functions studied in learning theory and signal pro-
cessing can be written as multi-index functions:

• Linear functions (r = 1): g(z) = z [Hoe59; CRT06; CD07].

• Phase retrieval (r = 1): g(z) = |z| or g(z) = z2 [Bar19; CSV13; TV23].

• Perceptron / 1-bit compressive sensing (r = 1): g(z) = sign(z) [GD88; BB08].

• Polynomials (r > 1): g(z) = z1 . . . zr [CM20].

• Intersection of half-spaces (r > 1): g(z) =
∏

k∈[r] I(zk − ak > 0) [KOS04; Vem10].
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• r-sparse parities (r > 1): g(z) = sign(z1 . . . zr) [Kea98; BKW03; KRT17].

where we denoted zk = ⟨wk, x⟩, k ∈ [r].

We are now ready to define the class of supervised learning tasks that will be studied in
the following.

Definition 1.3.2 (Gaussian multi-index model (GMIM)). We say the training data D =

{(xi, yi) ∈ Rd × Y : i ∈ [n]} has been drawn from a Gaussian r-index model if:

yi = g(W⋆xi), xi ∼ N (0, 1/dId), i.i.d. (1.11)

for g ∈ L2(γr) and the columns of W⋆ ∈ Rr×d form an orthonormal family W⋆W
⊤
⋆ = dIr.

Remark 1.3.2. A few important remarks about Definition 1.3.2.

• Orthogonality: The orthogonality assumption on the columns of W⋆ is without loss
of generality, as we can always go to a basis in which W⋆ has orthogonal rows by
redefining g.

• Scaling: The choice of scaling ||wk||22 = d is merely conventional at this stage. How-
ever, it becomes meaningful in the high-dimensional limit d→ ∞ with fixed r = Θd(1)

which will be of interest in the following. Indeed, together with the choice of scaling
for ||x||22 = Θd(1) and g ∈ L2(γr), this ensures that the labels have Θd(1) variance, and
hence a finite signal-to-noise ratio in the limit.

• Gaussian weights: A variation of definition 1.3.2 consists of taking W⋆ to be a matrix
with i.i.d. Gaussian entries N (0, 1). Although this is not generally equivalent, almost
orthonormality in the high-dimensional limit also suffice for asymptotic results stated
in this manuscript to hold.

As previously motivated, definition 1.3.2 is intended to model low-dimensional structure
in the data distribution. Under the isotropic Gaussian assumption on the covariates, however,
this structure is encoded entirely in the functional dependence of the labels on the covariates.
This is clearly a simplification of real data, where the covariates themselves typically carry
meaningful information about the task. Extending the present results to such settings is an
interesting research direction. Nevertheless, the isotropic case may be viewed as providing
an upper bound, since additional structure in the covariates is expected to facilitate learning.

Finally, it will be useful to distinguish two notions of learnability for the Gaussian
multi-index model.

Definition 1.3.3 (Learnability). Let D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} denote n samples from
a GMIM. Denote by Ŵ (D) an estimator of W⋆,18 which we assume has norm ||Ŵ ||F = Θ(d).

18In other words, any measurable function of the training data.
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• We say that Ŵ has weakly learned or weakly recovered a subspace V⋆ ⊂ span(W⋆) if:

inf
v∈V⋆

||v||2=1

∥∥∥∥∥ŴW⊤
⋆ v

d

∥∥∥∥∥
2

= Θd(1), w.h.p. as d→ ∞ (1.12)

• Similarly, we say that Ŵ has fully learned or fully recovered a subspace V⋆ ⊂ span(W⋆) if:

inf
v∈V⋆

∥v∥2=1

∥∥∥∥∥ŴW⊤
⋆ v

d

∥∥∥∥∥
2

= 1, w.h.p. as d→ ∞ (1.13)

Note that full-recovery is equivalent to Ŵ =W⋆ up to rotational symmetry.19

1.3.2 The questions

We can now revisit the question of generalisation motivated in section 1.2, now in the context
of two-layer neural networks. A widely held view in the folklore about their “unreasonable
effectiveness” is that neural networks succeed because they can adapt to the data by learning
the relevant features during training. Making this connection between adaptativity and
generalisation precise will be the main thread connecting the works in this manuscript.

More concretely, consider the empirical risk minimisation problem in eq. (1.9), where
a statistician seeks to learn a two-layer neural network from a batch of training data D =

(xi, yi) ∈ Rd × Y : i ∈ [n] drawn from a Gaussian multi-index model (Definition 1.3.2). They
key questions we would like to understand are:

(a) Feature learning: How does the network adapt to the low-dimensional structure in
the data, and how is this related to its performance?

(b) Approximation: How many neurons are required to approximate the target function?

(c) Estimation: How much data is required to achieve low risk, and how does this
compare with the optimal method for this problem?

(d) Optimisation: How efficient are popular training algorithms, such as SGD?

The results discussed in this manuscript will touch on each of these questions. Before turning
to them, however, it is useful to discuss some expectations.

A classical approximation result is that the class of unbounded width two-layer networks
F2lnn = ∪p≥1Fp with non-polynomial activation σ are universal approximators, [Cyb89;
HSW89; Les+93]. In other words, for any smooth function f⋆ : Rd → R and desired

19The identifiability question of exactly recovering W⋆ depends on the link function g. For instance, if
g(z) =

∑
k∈[r] gk(zk) is separable, W⋆ can be identified up to permutations [Yua11].
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precision ε > 0, there exists a neural network with non-polynomial activation σ and width
p ≥ 0 such that supx∈K |f⋆(x)− f(x;W,a)| < ε on any compact subset K ⊂ Rd. Those who
read section 1.2 attentively will not be surprised that such a general result does not teach
much about how large p needs to be. In particular, one can construct smooth targets for
which p = O(ed) [ES16]. Quantitative results of the type ||f − f⋆||L2(γd) ≤ O(dγ(g)2/p) can
be derived for the GMIM (definition 1.3.2), where γ(g) = Θd(1) is a complexity measure
depending on the non-linearity σ — for instance the Barron norm for sigmoids [Bar93] or
the TV norm for the ReLU [Bac17a].20

Regarding estimation, learning a multi-index target f⋆(x) = g(Wx) can be seen as the
composition of two problems: (i) learning a non-parametric function g : x ∈ Rr 7→ g(z) ∈ R;
(ii) inverting a linear problem z = Wx. As we have discussed in theorem 1.2.1, the sample
complexity of (i) is n(ϵ) ∼ ϵ−

2+r
2 = Θd(1) in the worst-case, while inverting a linear system in

(ii) has complexity n = Θd(d) for d→ ∞ at r = Θd(1). Therefore, we expect the bottlenack
to be dominated by the latter.

Overview

This manuscript is organised as follows. Chapter 2 examines the asymptotic generalisation
properties of two-layer neural networks with fixed first-layer weights, also known as the
random features approximation to kernel methods. Although considerably simpler than the full
learning problem in eq. (1.9), this setting already presents significant technical challenges
due to the non-linearity of the features. A central tool in the analysis is the notion of Gaussian
equivalence, introduced in section 2.5.1, which makes it possible to derive sharp asymptotic
formulas for network performance in the high-dimensional limit. Several consequences of
these formulas are then explored. Section 2.3 derives rates for the excess error under source
and capacity conditions, also known as scaling laws. Section 2.4 highlights the limitations
imposed by the lack of adaptivity in this regime, showing that the high-dimensional predictor
effectively behaves as a linear function, thereby restricting expressivity. Finally, Section 2.7
extends the analysis to the multi-layer setting.

Chapter 3 turns to the impact of training the first-layer weights. It shows that even a few
large updates enable the features to adapt to the low-dimensional structure in the data, thereby
enhancing both expressivity and performance at fixed sample complexity. In particular,
Section 3.2 characterises how the network weights correlate with the low-dimensional
structure, while section 3.3 provides upper and lower bounds on the generalisation error
after training. Section 3.4.2 establishes a conditional form of Gaussian equivalence for the
feature matrix in the proportional asymptotics, enabling sharp asymptotic characterisations
presented in section 3.4.3.

20See [Bac17a] for results on L∞.
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Chapter 4 investigates the fundamental computational limits of learning multi-index
functions with first-order methods in the high-dimensional regime, thereby providing a
benchmark for the results of the preceding sections. Section 4.2 introduces a classification of
index subspaces as trivial, easy, or hard to learn. Section 4.3 explores a hierarchical learning
phenomenon, showing that hard subspaces can be learned efficiently when coupled to easier
ones. Section 4.4 examines spectral methods that achieve optimal sample complexity.





2 | Network at initialisation

In this chapter, we consider the empirical risk minimisation problem introduced in eq. (1.9)
in the case where the first-layer weights are fixed at some W0 ∈ Rp×d:

min
a∈Rp

n∑
i=1

ℓ (yi, f(xi;W0, a)) + λr(a). (2.1)

where for convenience we rescaled the risk by a factor n.21 The results discussed in section 2.1
are based on [Cui+21; Def+25; Sch+23; Sch+24a], while the results discussed in section 2.5
are based on [Ger+20; Gol+22; Lou+21a].

Remark 2.0.1 (Motivation). For several reasons, this problem has been widely studied in
the machine learning literature.

• Convexity: Since f(x;W0, a) = ⟨a, σ(W0x) is linear in the second-layer weights, this
yields a considerably simpler optimisation problem. In particular, if both the loss and
regulariser are convex functions, eq. (2.1) is a convex problem in a ∈ Rp. Despite this
simplification, it still retains some of the features of the generalisation curves of neural
networks, as we will discuss next.

• Random Features: When r(a) = λ||a||22 and the rows ofW0 are sampled i.i.d. asw0,k ∼ µw,
Equation (2.1) corresponds to a well-known problem in the learning literature: the random
features approximation to kernel methods [BBV06; RR07]. Indeed, the representer theorem
implies that in this case the predictor corresponding to the (unique) solution of eq. (2.1)
can be written as:

f(x;W0, âλ) =
n∑

i=1

αiK̂p(xi, x), (2.2)

for some data-dependent coefficients α ∈ Rn, where K̂p is the empirical random features

21This amounts to a redefinition of the regularisation term.
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kernel, an approximation of a limiting kernel K:

K̂p(x, x
′) =

1

p

p∑
k=1

σ (⟨w0,k, x⟩)σ (⟨w0,k, x
′⟩) −−−→

p→∞
E [σ (⟨w0, x⟩)σ (⟨w0, x

′⟩)] = K(x, x′)

By carefully choosing the activation function σ, one can approximate a wide class of
kernels [RR07]. Importantly, this reduces the cost of implementing kernel methods from
O(n2) to O(np), which can be computationally advantageous when n≫ p.

• Lazy regime: More recently, it has been shown that in the infinite-width limit p→ ∞,
under “standard” initialisation a0,j = O(1/√p),22 the (S)GD dynamics for the second-layer
weights evolve much faster than those of the first layer [COB19; Lee+19]. As a consequence,
the problem in eq. (1.9) becomes equivalent to kernel regression with

K̂(x, x′) =
1

p

p∑
k=1

σ (⟨w0,k, x⟩)σ (⟨w0,k, x
′⟩) + ⟨x, x′⟩

p

p∑
k=1

σ′(⟨w0,k, x⟩)σ′(⟨w0,k, x
′⟩) (2.3)

where the first term is the random features kernel introduced above, and the second term
is known as the neural tangent kernel [JGH18]. Therefore, the simpler problem in eq. (2.1)
has recently gained in popularity as a proxy for studying lazy two-layer neural networks.

2.1 Random features ridge regression

As a starting point, we consider the random features ridge regression case, where ℓ(y, f(x)) =
(y − f(x))2, r(a) = ||a||22 and w0,k ∼i.i.d µw. In this case, the problem in eq. (2.1) admits a
closed form solution:

âλ(X, y) = argmin
a∈Rp

n∑
i=1

(yi − ⟨a, σ (W0xi)⟩)2 + λ||a||22

= (Φ⊤Φ + λIp)
−1Φ⊤y (2.4)

where we define the feature matrix Φik = σ(⟨w0,k, xi). Characterising the risk thus becomes
a problem in random matrix theory, depending on both the feature matrix Φ and the labels
y. We will work under the following assumptions:

Assumption 2.1.1 (Data). Assume the training data D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} is
sampled as:

yi = f⋆(xi) + εi, xi ∼ µx i.i.d. (2.5)

22This is known as the standard normalisation since it is the default normalisation on popular machine
learning frameworks such as PyTorch and TensorFlow.
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where µx is a distribution over Rd, f⋆ ∈ L2(µx) and the noise ε = yi − f⋆(x) has zero mean
E[ϵ|x] = 0 and finite variance E[ϵ2|x] = σ2 <∞.

Remark 2.1.1. Assumption 2.1.1 are much more broader than the GMIM introduced in
definition 1.3.2. Indeed, since the network features are random and independent from
the low-dimensional structure of the multi-index model (⟨w0,k, w⋆,l = O(d−1/2) for all
k ∈ [p], l ∈ [r]), features φ(x;w) = σ(⟨w, x) are uncorrelated to y. Since the predictor
in assumption 2.1.1 belongs to the column space of the features, it makes no difference to
assume a particular structure on f⋆.

2.1.1 Deterministic equivalent

The key technical idea in the analysis is to regard the feature matrix Φ as an empirical
approximation of an operator on the Hilbert space L2(µx⊗µw), where all relevant quantities
in the problem can be diagonalised. This perspective allows us to draw on results from
random operator theory to characterise the risk [KG00]. More precisely, we can associate to
the features a Fredholm integral operator T : L2(µw) → L2(µx):

(Th)(x) =
∫
φ(x;w)h(w)µx(dw) (2.6)

This is a compact operator, and therefore can be diagonalized:

T =
∞∑

m=1

ξmϕmψ
⋆
m, (2.7)

where (ξm)m≥1 ⊆ R are the eigenvalues and (ψm)k≥1 and (ϕm)k≥1 are orthonormal bases of
L2(µx) and L2(µw), respectively:

⟨ψm, ψm′⟩L2(µx) = δmm′ , ⟨ϕm, ϕm′⟩L2(µw) = δmm′ . (2.8)

Without loss of generality, we assume the eigenvalues are ordered in non-increasing absolute
values |ξ1| ≥ |ξ2| ≥ . . . , and for simplicity of presentation we assume that all eigenvalues are
non-zero, i.e., Ker(T) = {0}. Denote Σ = diag(ξ21 , ξ

2
2 , . . .) ∈ R∞×∞ the diagonal matrix of

the squared eigenvalues. Similarly, since f⋆ ∈ L2(µx), it admits the following decomposition
in (ψm)k≥1:

f⋆ =
∑
k≥1

θ⋆,mψm (2.9)

This decomposition effectively maps the non-linear problem in eq. (2.4) to a linear problem
in an infinite dimensional Hilbert space. The question is then under which conditions on
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ψm, ϕm and the eigenvalues ξm we can carry a random matrix theory analysis. A set of
sufficient conditions are the following.

Assumption 2.1.2 (Tail spread). There exists ℓ ∈ N such that

pξ2ℓ+1 ≤
λ

n

∞∑
m=ℓ+1

ξ2m. (2.10)

Assumption 2.1.3 (Concentration of the eigenfunctions). Denote the (infinite-dimensional)
random vectors23 ψ := (ξmψm)m≥1 and ϕ := (ξmϕm)m≥1. There exists a constant Cx > 0

such that for any deterministic p.s.d. matrix A ∈ R∞×∞,24 with Tr(ΣA) <∞, we have

P
(
|⟨ψ,Aψ⟩ − Tr(ΣA)| ≥ t · ∥Σ1/2AΣ1/2∥F

)
≤ Cx exp {−t/Cx} , (2.11)

P
(
|⟨ϕ,Aϕ⟩ − Tr(ΣA)| ≥ t · ∥Σ1/2AΣ1/2∥F

)
≤ Cx exp {−t/Cx} . (2.12)

Assumption 2.1.2 is an assumption on the spread of the spectral tail. It essentially states
that, relative to the scale npλ−1, the tail of the spectrum must not be dominated by single
eigenvalues. It holds, for instance, in the power law case ξ2m ∝ m−α when α > 1 as soon
as ℓ ≳ (α − 1)npλ−1. Instead, Assumption 2.1.3 is a Hanson-Wright type inequality on
the concentration of the eigenfunctions [Ver18]. It essentially states that the eigenfunctions
behave as sub-Gaussian vectors.

Under these assumptions, it can be shown that the risk can be approximated by a deter-
ministic equivalent.

Definition 2.1.1 (Risk deterministic equivalent). Given λ > 0, a positive-definite operator
Σ ∈ R∞×∞ and θ⋆ ∈ R∞, let ν2 ≥ 0 denote the unique solution of the following self-consistent
equation:

1 +
n

p
−

√(
1− n

p

)2

+ 4
λ

pν2
=

2

p
Tr
(
Σ(Σ + ν2)

−1
)
, (2.13)

23Note that we can consider both ψ and ϕ random elements of the Hilbert space ℓ2 with distribution induced
by x ∼ µx and w ∼ µw, where E[ψψ⊤] = E[ϕϕ⊤] = Σ and Tr(Σ) <∞.

24In other words, a linear operator acting on an infinite-dimensional Hilbert space
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and define the following short-hand:

ν1 =
ν2
2

1− n

p
+

√(
1− n

p

)2

+ 4
λ

pν2

 . (2.14)

Υ(ν1, ν2) =
p

n

[(
1− ν1

ν2

)2

+

(
ν1
ν2

)2
Tr(Σ2(Σ + ν2)

−2)

p− Tr(Σ2(Σ + ν2)−2)

]
, (2.15)

χ(ν2) =
Tr(Σ(Σ + ν2)

−2)

p− Tr(Σ2(Σ + ν2)−2)
. (2.16)

Then, the deterministic equivalent for the excess risk is given by:

Rn,p(λ, θ⋆,Σ) = Bn,p(λ, θ⋆,Σ) + Vn,p(λ,Σ) (2.17)

Bn,p(λ, θ⋆,Σ) =
ν22

1−Υ(ν1, ν2)

[
⟨θ∗, (Σ + ν2)

−2θ∗⟩+ χ(ν2)⟨θ∗,Σ(Σ + ν2)
−2θ∗⟩

]
, (2.18)

Vn,p(λ,Σ) = σ2 Υ(ν1, ν2)

1−Υ(ν1, ν2)
, (2.19)

Note Rn,p(λ, θ⋆,Σ) is a deterministic function depending only on the constants n, p, λ
and on Σ and θ⋆.

Theorem 2.1.1 ([DLM24], informal). Let R denote the excess risk associated with the
minimiser âλ of eq. (2.4):

R(f⋆, X,W0, λ, σ
2) = Eε,x∼µx

[
(f(x; âλ,W0)− f⋆(x))

2] (2.20)

Then, for any D > 0, under assumption 2.1.2 and 2.1.3, with probability 1− n−D − p−D, R
admits a deterministic equivalent Rn,p ∈ R+:

|R − Rn,p| = Õ(n−1/2 + p−1/2) · Rn,p (2.21)

where Rn,p(λ, σ
2, θ⋆,Σ) is given by definition 2.1.1.

This theorem tell us that, as soon as n, p are large, the risk, which is a function of the
random quantities W0, X, y can be well approximated by a function of the deterministic
quantities θ⋆,Σ. For conciseness, we omit some technical formal details in the statement of
the theorem, and refer the interested reader to [DLM24].

Theorem 2.1.1 is considerably more general than previous results in the literature. First, it
extends the dimension-free results of [CM24] for well-specified ridge regression and [MS24]
for kernel ridge regression (see p → ∞ discussion below). Moreover, the deterministic
equivalent recovers as particular cases the asymptotic results derived under proportional
n, p = Θ(d) [MM22; Lou+21a; Sch+23] and polynomial n, p = Θ(dκ) [Xia+22; HLM24;
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AFP25] scaling.

Remark 2.1.2. We draw the attention of the reader to the following important features of
theorem 2.1.1.

• It provides non-asymptotic approximation bounds that hold pointwise. In particular,
it does not require probabilistic assumptions over the target function coefficients θ⋆.

• It does not explicitly dependent on the feature map dimension d. However, it enters
implicitly through θ⋆,Σ.

• The approximation is multiplicative, and therefore relative to the scale of the risk. In
particular, they hold even if Rn,p ≍ n−γ , allowing the study of scaling laws, which will
be discussed in section 2.3.

• The bound depends on λ−1 and λ−1
>ℓ . Following similar arguments as in [CM24;

CM24], this assumption could be removed at the cost of worse rates n−C + p−C with
C < 1/2.

Corollary 2.1.1 (Kernel limit). In the p→ ∞ limit both ν1 and ν2 converge to a single νK
which is the unique positive solution to the following self-consistent equation

n− λ

νK
= Tr

(
Σ(Σ + νK)

−1
)
. (2.22)

Moreover, the bias eq. (2.18) and variance eq. (2.19) terms simplify to:

BK,n(θ∗, λ) =
ν2K⟨θ∗, (Σ + νK)

−2θ∗⟩
1− 1

n
Tr(Σ2(Σ + νK)−2)

, VK,n(λ) = σ2 Tr(Σ2(Σ + νK)
−2)

n− Tr(Σ2(Σ + νK)−2)
. (2.23)

We denote the corresponding test error RK,n(θ∗, λ) = BK,n(θ∗, λ) + VK,n(λ).

Note that eq. (2.19) exactly agrees with the dimension-free deterministic equivalents for
kernel methods from [CM24; MS24].

Remark 2.1.3 (Degrees-of-freedom). The quantities appearing the the expressions of
eq. (2.25) are known as degrees-of-freedom [CD07]:

df1(ν) = Tr
{
Σ(Σ + ν)−1

}
, df2(ν) = Tr

{
Σ2(Σ + ν)−2

}
. (2.24)

The degrees-of-freedom can be seen as a “soft count” of how many eigenvalues are larger
than the parameter ν, since eigenvalues ξ2m ≪ ν contribute to the trace, while eigenvalues
ξ2m ≫ ν are shrank. With this notation, we can rewrite:

BK,n(θ∗, λ) =
ν2K⟨θ∗,Σ(Σ + νK)

−2θ∗⟩
1− 1

n
df2(νK)

, VK,n(λ) = σ2 df2(νK)

n− df2(νK)
. (2.25)
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where νK is the unique solution of n−λ/ν = df1(ν). Comparing these expressions to eqs. (2.18)
and (2.19) give an interesting interpretation of quantities appearing in the RF deterministic
equivalent. Indeed, the variance in the RF case is controlled by Υ, which contains not only
df2 (as in the kernel case) but an additional term due to the additional randomness of W0.
Similarly, the bias term also contains an additional term due to the variance of W0, given
by χ(ν2). We refer the reader to [Lou+22] for a detailed discussion how to decompose the
variance contribution of W0 with respect to the other sources of randomness in the problem.

Finally, the second limit of interest is the n → ∞ where data is abundant. In this case,
the empirical risk eq. (1.4) converge to the population risk, and therefore the bottleneck in
the risk is given by the capacity of the random feature class to approximate the target f⋆.

Corollary 2.1.2 (Approximation limit). In the n→ ∞ limit, we have ν1 → 0 and ν2 → νA

satisfying the following simplified self-consistent equation:

p = Tr
(
Σ(Σ + νA)

−1
)
. (2.26)

Moreover, the bias eq. (2.18) and variance eq. (2.19) terms simplify to:

BA,p(θ∗) = νA⟨θ∗, (Σ + νA)
−1θ∗⟩, VA,n = 0. (2.27)

We denote the risk in this case RA,p(θ∗) = BA,p(θ∗), which as expected does not depend on λ.

2.1.2 Intuition

As previously hinted, the key intuition behind theorem 2.1.1 is to regard the feature matrix
as the empirical version of an infinite dimensional Fredholm operator. To see this more
precisely, consider again the diagonalisation of the feature map in a basis of L2(µx ⊗ µw):

φ(x;w) =
∞∑

m=1

ξmϕm(w)ψm(x)
∗, (2.28)

Defining the “matrices” U ∈ Rn×∞ and V ∈ Rp×∞ with components:

Uim = ψm(xi), Vkm = ϕm(wk) (2.29)

The feature matrix Φ ∈ Rn×p can be re-written as Φ = UΛV ⊤, where Λ = diag(ξm). Under
the assumptions in the problem, the matrices U, V behave similar to a Gaussian matrices with
rank n and p, respectively. For instance, since xi ∼ µx are independently sampled, U is close
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to left-orthogonal due to the law of large numbers:

(U⊤U)mm′ =
n∑

i=1

ψm(xi)ψm′(xi) ∼ n
(
δmm′ +O(n−1/2)

)
(2.30)

On the other hand, assumption 2.1.3 on concentration of quadratic forms implies it behaves
similarly to a Gaussian matrix on the right-side. Although heuristic, this intuition is exact:
the expression in theorem 2.1.1 can be derived by pretending U, V are Gaussian matrices
and following standard random matrix theory arguments for Wishart matrices.

This is an instance of Gaussian universality, which will be discussed in more detail in
section 2.5.1.

2.1.3 Comparison with high-dimensional ridge regression

The formulas in definition 2.1.1 bear close resemblance with a the formulas for the clas-
sical random design analysis of ridge regression in the proportional regime. Indeed, this
connection can provide an useful intuition for this result.

Consider the standard well-specified ridge regression problem, where we are interested
in studying the performance of the linear predictor f(x; β) = ⟨β̂λ, x⟩ with β̂λ ∈ Rd:

β̂λ(X, y) =
(
X⊤X + λId

)−1
X⊤y (2.31)

for data D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} drawn according to:

yi = ⟨β⋆, xi⟩+ εi, xi ∼ µx, (2.32)

where E[εi|x] = 0 and E[ε2i ] = σ2 <∞. Opening up the expressions, it is easy to show that
the excess risk admits the following bias-variance decomposition:

R(β⋆, X, λ, σ
2) = Eε,x∼µx

[(
⟨β̂λ, x⟩ − ⟨β⋆, x⟩

)2]
= B(β⋆, X, λ) + V(X,λ, σ2) (2.33)

where:

B(β⋆, X, λ) = λ2⟨β⋆,
(
X⊤X + λId

)−1
Σ
(
X⊤X + λId

)−1
β⋆⟩ (2.34)

V(X,λ, σ2) = σ2Tr
{
X⊤X

(
X⊤X + λId

)−2
Σ
}

(2.35)

where Σ = E[xx⊤]. The high-dimensional asymptotics of eq. (2.34) has been studied by
several works in the literature, under various assumptions on the covariate distribution µx,
target weights β⋆ ∈ Rd and covariance Σ ∈ Rd×d, see for example [DW18; WX20; Lou+21a;
Has+22; Bac24]. For concreteness, consider Proposition 4.1 from [Bac24].
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Proposition 2.1.1 ([Bac24]). Assume the following assumptions hold in the high-dimensional
limit d→ ∞:

• xi = Σ1/2zi with zi i.i.d., zero mean, unit variance sub-Gaussian random variables and
Σ =

∑d
j=1 τjvjv

⊤
j with non-increasing τj > 0 and σ1 = ||Σ||op <∞

• The empirical spectral measure 1/d
∑d

j=1 δτj converge to a compactly supported proba-
bility density ρ on R+.

• ||β⋆||2 <∞ and
∑d

j=1⟨vj, β⋆⟩δτj converge to a measure with bounded mass.

Then, in the proportional limit where n, d→ ∞ with n = Θ(d):

R(β⋆, X, λ, σ
2)

a.s.−−→ Rprop = Bprop + Vprop (2.36)

where:

Bprop(β⋆,Σ, λ, γ) =
ν(λ)2⟨β⋆,Σ (Σ + ν(λ)Id)

−2 β⋆⟩
1− 1

n
Tr {Σ2(Σ + ν(λ)Id)−2}

(2.37)

Vprop(Σ, λ, σ
2, γ) = σ2 Tr

{
Σ2 (Σ + ν(λ)Id)

−2}
n− Tr {Σ2(Σ + ν(λ)Id)−2}

(2.38)

with ν(λ) ∈ R+ the unique solution of the following self-consistent equation:

n− λ

ν
= Tr

{
Σ(Σ + νId)

−1
}

(2.39)

Note that even though we write the bias and variance terms as a function of the diverging
dimensions n, d and the high-dimensional objects β⋆ and Σ, all the quantities involved in the
above expression are finite. For example,

1

n
Tr
{
Σ2(Σ + νId)

−2
}
→ γ

∫
ρ(dτ)

τ 2

(τ + ν)2
. (2.40)

Therefore, the expressions in eqs. (2.37) and (2.38) could be written only as a function of
scalar quantities. However, for the sake of comparison, it is useful to write them in this way.

Remark 2.1.4 (Comparison with KRR). Note that the equations are almost identical to the
kernel ridge regression deterministic equivalent from corollary 2.1.1. The only difference is
the presence of an additional Σ in enumerator of the bias:

⟨β⋆,Σ(Σ + ν)−2β⋆⟩ vs. ⟨θ⋆, (Σ + ν)−2θ⋆⟩ (2.41)

This can be understood from the fact that the covariate xi plays the role of the kernel features
in KRR. Indeed, in KRR we decomposed the target function as a linear combination in the
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basis (ψm)m≥0 of L2(µx), and not in the feature basis f⋆(x) = ⟨θ⋆, xi⟩ as we did in the ridge
regression case. Therefore, a one-to-one identification is given by θ⋆ = Σ1/2β⋆.

The fact that the high-dimensional deterministic equivalents agree exactly with the
non-asymptotic is remarkable but intuitive. Indeed, ridge regression is equivalent to a linear
kernel, and the sub-Gaussian assumption on the covariates implies assumption 2.1.3.

2.2 The double descent phenomenon

As motivated in Section 1.2, an important observation in modern deep learning practice is
that overparametrised neural networks can achieve small excess risk even while interpolating
the training data.

This behaviour contrasts with the traditional view in statistics, according to which increas-
ing the number of parameters beyond a certain point leads to overfitting and consequently
a degradation of risk. This intuition is formalised in the bias–variance trade-off, commonly
taught in introductory statistics: a model should be expressive enough to capture the under-
lying signal, but not so flexible that it fits the noise [Jam+13]. The empirical observation
that neural networks can generalise while overfitting the training data defies this picture,
while also challenging complexity based statistical learning bounds such as theorem 1.2.2
[GBD92; Zha+16].

Instead, the deterministic equivalent from theorem 2.1.1 give us access to an exact
characterisation of the excess risk for the two-layer neural network at initialisation. As a first
application of this result, we can study the exact dependence of the bias and variance terms
on the network width p, as well as how it depends on the geometry of the data distribution.

To study the empirical risk interpolator, consider the ridgeless limit where λ→ 0+. In
this limit, the ridge estimator reduces to the ordinary least squares estimator:

âols(X, y) = Φ†y (2.42)

where Φ† ∈ Rp×n denotes the Moore-Penrose inverse of Φ ∈ Rn×p.
There are two regimes of interest:

• Underparametrised regime (n > p): In this case, ν1 = 0 and ν2 satisfies Tr{Σ(Σ +

ν2)
−1} = p. It follows that Υ = n/p, and we can simplify the deterministic equivalent

for the bias and variance:

Bn>p =
n

n− p
ν2⟨θ⋆, (Σ + ν2)

−1θ⋆⟩, Vn>p = σ2 p

n− p
(2.43)

Interestingly, the variance coincides exactly with that of well-specified ordinary least
squares in the classical regime n > p. It is a monotonically increasing function of p
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for p < n, diverging precisely at p = n. By contrast, the bias is not monotonic in p:
while the factor n

n−p
increases with p, the term ν2⟨θ⋆, (Σ + ν2)

−1θ⋆⟩ decreases, with
the rate of decay governed by θ⋆,m and ξ2m (the faster these decay, the faster this term
decreases).

• Overparametrised regime (n < p): In this regime, we have ν1/ν2 = 1− n/p > 0, with
ν2 determined by the condition Tr{Σ(Σ + ν2)

−1} = n. Notably, ν2 does not depend
on the width p. The expressions for the bias and variance do not simplify further, but
one can show that the risk starts from the peak Rn,p ∼ (p− n)−1 as p→ n− and then
decreases monotonically with p, eventually reaching the plateau value given by the
kernel limit described in corollary 2.1.1.

The increasing behaviour of the variance and the decreasing behaviour of the bias as the
width p grows are consistent with the classical bias–variance trade-off. What is more unusual,
however, is that the bias itself begins to increase through the variance-like factor n

n−p
once

p approaches n. This unexpected behaviour of the bias can be traced back to an additional
source of variance induced by the randomness of the weights W0. A finer bias–variance
decomposition, which separates these contributions, makes this point explicit; see [dAs+20;
AP20; LD21; Lou+22] for detailed discussions.

The divergence of the excess risk at n = p is referred to as the interpolation peak. It occurs
exactly at the transition where the linear system y = Φa changes from being overdetermined
(no exact solution) to underdetermined (infinitely many solutions), with a unique solution
âols = Φ−1y at the critical point n = p. This is the point with largest variance, and indeed
can be mitigated by properly regularising the problem [KH91; Nak+21b].

Finally, the second descent in the overparametrised region (p > d) is known as the
double descent phenomenon [Bel+19]. Early works on exact asymptotics for linear regression
already observed a second descent [Opp+90; KH91], but in that setting the minimum error
occurs before interpolation (p < n), consistent with the classical bias–variance trade-off. By
contrast, empirical studies have shown that neural networks can continue to improve their
performance even beyond the interpolation peak [GBD92; Spi+19; Nak+21a], a behaviour
referred to as benign overfitting.

Interestingly, both behaviours are captured by the two-layer network with fixed first
layer weights, and depend on the interaction between the data distribution and the network
architecture, here parametrised by θ⋆, σ2, and Σ. In particular, the location of the first
minimum is controlled by the rate of decay of Σ and θ⋆, which control how easy is the task.
Figure 2.1 illustrates these two scenarios for a task with θ⋆ = e1 and σ2 = 0.01. With a
fast-decaying spectrum ξ2m = 2−m, the risk is minimised before interpolation (p < n), and
performance deteriorates afterwards, corresponding to malign overfitting. By contrast, with
a slowly decaying spectrum ξ2m = m−1.2, we observe benign overfitting, where the best risk
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Figure 2.1: Excess risk Rn,p as a function of the network width p for n = 100, σ2 = 0.01
and θ⋆ = e1. The orange curve shows a malign overfitting case with fast decaying spectrum
ξ2m = 2−m, while the blue curve shows a benign overfitting case with slow decaying spectrum
ξ2m = m−1.2.

is achieved in the kernel regime p→ ∞. For a detailed discussion on the criteria for benign
overfitting in linear models, see [Bar+20; CM24].

2.3 Scaling laws

A classical question in learning theory is to determine how quickly the excess risk converges
to its asymptotic value as n → ∞. The convergence rate depends critically on both the
hypothesis class and the structure of the data. In the setting of random features regression,
this rate is governed by a trade-off between the regularity of the target function f⋆ and the
expressivity of the random features kernel. Concretely, it is determined by the relative decay
of the spectrum of the operator in eq. (2.7) and of the target coefficients θ⋆ when expanded
in its eigenfunction basis, eq. (2.9).

Recall that as long as the Fredholm operator T is full rank (ξ2m > 0 for all m ≥ 0), the
RKHS H = Im(T) spanned by the p→ ∞ RF kernel is dense in L2(µx) (i.e. it is a universal
approximator). From a functional-analytic perspective, the relative decay therefore quantifies
the “size” of H within L2(µx). See [Bac17b] for further discussion of this viewpoint.

Instead of studying specific target functions and kernel, it is common to study a family
of problems parametrised by a given relative decay of these quantities. A classical setup in
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L2(µx)

HH2H3

Figure 2.2: (Left) Illustration of the source condition, where the spaces H2r corresponding to
functions with finite ||Σrθ⋆|| <∞ are nested in an increasing order H3 ⊂ H2 ⊂ H ⊂ L2(µx).

this direction are the source and capacity conditions [CD07]:

TrΣ
1/α <∞ (Capacity)

||Σrθ⋆||L2(µx) <∞ (Source)

where α > 1 and r ≥ 0. Note these conditions are equivalent to a power-law assumption on
the decay of the eigenvalues and target coefficients, i.e. there exists constants C1, C2 such
that:

ξ2m = C1m
−α, θ∗,m = C2m

− 1+2αr
2 . (2.44)

Note that the larger r, the faster de target coefficients decay, meaning that the easier it is
to express it with the kernel. In particular, for r < 1/2 we have f⋆ /∈ H while for r ≥ 1/2 we
have f⋆ ∈ H, see fig. 2.2 for an illustration. A similar role is played by the capacity exponent
α > 1: the faster is the decay of the kernel eigenvalues, the larger is the kernel capacity.
An alternative and useful picture is to think of α as controlling the effective dimension
of the kernel feature space [Zha05]. This can be made quantitative through the lens of
the degree-of-freedom df1(ν) introduced in eq. (2.24), which can be seen as a measure of
the effective dimension of the feature space. Then, the source condition is equivalent to
df1(ν) ≤ Cν−1/α, i.e. the larger α > 0, the smaller the effective dimension of the RKHS.

Recent empirical studies in deep learning have shown that the large-scale performance of
neural networks often follows a scaling-law relationship with the number of samples, model
size, and computational budget [Kap+20; Hes+17]. These neural scaling laws have had a major
impact on practice, as they provide a principled way to scale up small models (for instance,
those used in fine-tuning) while avoiding performance bottlenecks — such as oversizing a
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Figure 2.3: Different decays for the excess risk for different values of n and different regular-
ization λ = Θ(n−ℓ−1) decays, at given noise variance σ ≥ 0. The red solid line represents the
noise-induced crossover line, separating the effectively noiseless regime (green and blue) on
its left from the effectively noisy regime (red and orange) on its right. Any KRR experiment
at fixed regularization decay ℓ (corresponding to drawing a horizontal line at ordinate ℓ)
crosses the crossover line if ℓ > α/(1 + 2α(r ∧ 1)). The corresponding learning curve will
accordingly exhibit a crossover from a fast decay (noiseless regime) to a slow decay (noisy
regime). Plot from [Cui+21].

model when limitations actually stem from data or compute.
Neural scaling laws have sparked renewed interest in the deep learning theory community

in the classical literature on kernel source and capacity conditions. Building on the connection
between kernels and neural networks discussed in chapter 2, several recent works have
examined these laws through a kernel lens [MRS22; Bah+24; AZP24; BAP24; Paq+24;
Lin+24]. As we will see, key features of the observed neural scaling laws — such as the trade-
offs between model and sample complexity — are captured by random features regression.

2.3.1 Kernel ridge regression rates

As a starting point, consider the kernel limit where p→ ∞. The excess risk rates under the
source and capacity conditions in eq. (2.44) can be obtained from corollary 2.1.1.

Theorem 2.3.1 (KRR excess risk rates, [Cui+21]). Under source and capacity conditions
eq. (2.44) and regularisation scaling λ = Θ(n−ℓ−1), the deterministic equivalent eq. (2.17)
rate is given by:

RK,n(σ
2, α, r, ℓ) = Θ

(
n−2α( ℓ

α
∧1)(r∧1) + σ2n−1+( ℓ

α
∧1)
)

(2.45)

We refer the interested reader to [Cui+21] for a derivation of these rates from corol-
lary 2.1.1. Theorem 2.3.1 is best summarised in a diagram, see fig. 2.3. We can distinguish
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Figure 2.4: Excess risk for KRR under source and capacity conditions as a function of the
number of samples. (Left) Cross-over between the green and red (plateau) regions in the
weakly regularisation regime ℓ > α. (Right) Cross-over between the blue and orange
(plateau) regions in the strongly regularisation regime ℓ < α. Solid lines correspond to
the theoretical prediction of theorem 2.3.1 and points are simulations conducted using the
python scikit-learn KernelRidge package [Ped+11]. Dashed lines represent the slopes
predicted by eq. (2.46), with the colours in correspondence to the regime from fig. 2.3. Plot
from [Cui+21]

four different regimes, with cross-overs between bias-dominated and variance-dominated
rates.

• Weak regularisation ℓ ≥ α (green and red regions),

RK,n = Θ
(
max

(
σ2, n−2α(r∧1))) . (2.46)

The excess error transitions from a fast decay 2α(r ∧ 1) (green region in fig. 2.3 and
green dashed line in fig. 2.4 (left) to a plateau (red region in fig. 2.3 and red dashed
line in fig. 2.4 (left) with no decay as n increases. This corresponds to a crossover from
the green region to the red region in the phase diagram fig. 2.3.

• Strong regularisation ℓ ≤ α (blue and orange regions),

RK,n = Θ
(
max

(
σ2, n1−2ℓmin(r,1)− ℓ

α

)
n

ℓ−α
α

)
. (2.47)

The excess error transitions from a fast decay 2ℓ(r ∧ 1) (blue region in fig. 2.3) to a
slower decay (α− ℓ)/α (orange region in fig. 2.3) as n is increased and the effect of
the additive noise kicks in, see fig. 2.4 (right). The crossover disappears for too slow
decays ℓ ≤ α/(1 + 2α(r ∧ 1)), as the regularization λ is always sufficiently large to
completely mitigate the variance. This corresponds to the max in (2.47) being realized
by its second argument for all n.

An important curve in the diagram of fig. 2.3 is given by the optimal choice of regularisation,
i.e. the value ℓ⋆ leading to fastest decreasing of the excess risk.
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Corollary 2.3.1 (Optimal KRR rates). The optimal excess risk rates achieved by the KRR
under source and capacity conditions eq. (2.44) and regularisation λ = Θ(n−ℓ−1) are given
by:

• Noiseless rate: If n≪ σ− 1
α(r∧1) , any ℓ⋆ ∈ (α,∞) yields excess error decay

RK,n = Θ
(
n−2α(r∧1)) (2.48)

This corresponds to the vertical red line (—) in fig. 2.3.

• Noisy rate: If n≫ σ−max(2, 1
α(r∧1)), then there exists an unique optimal regularisation

scale ℓ⋆ = α
1+2α(r∧1) yielding the minimax excess risk rates:

RK,n = Θ
(
n− 2α(r∧1)

1+2α(r∧1)

)
. (2.49)

This corresponds to the red curve in fig. 2.3.

Remark 2.3.1 (Relationship with literature). Theorem 2.3.1 and corollary 2.3.1 encompasses
some known rates in the kernel ridge regression literature.

• The optimally regularised noisy rate in eq. (2.49) corresponding to the n → ∞
asymptotic (purple dot in fig. 2.4) is the well-known rate from Caponnetto and De
Vito [CD07]. This is also the minimax rate under linear hypothesis and source condition
r > 1/2. Curiously, corollary 2.3.1 shows the existence of a faster, noiseless rate at low
sample complexity. Therefore, the optimal decay for the excess risk exhibits a cross-
over from a fast decay 2α(r ∧ 1) — corresponding to, effectively, the optimal rates
expected in a “noiseless” situation — to a slower decay 2α(r ∧ 1)/(1 + 2α(r ∧ 1))

corresponding to the classical “noisy” optimal rate. This is illustrated in fig. 2.5 where
the two rates are observed in succession for the same data as the number of points is
increased.

• The nomenclature “noiseless” is motivated by [SGW20b; BCP20b], who obtained
these rates in a noiseless data setting.

Note that in all scenarios (whether with fixed or optimal regularisation) one observes a
cross-over from an effectively noiseless regime (green or blue in fig. 2.4) to an effectively noisy
regime (red or orange in fig. 2.4), depending on the amount of data available. Importantly,
although noise is present in the green and blue “noiseless” regimes, its effect is not felt, and
the learning curves follow noiseless rates. In fact, if the noise level is small, the classical noisy
rates may only appear once an astronomical amount of data is available. Intuitively, for small
sample sizes n low-variance directions of the feature space are used to overfit the noise, while
the high-variance directions are accurately captured. In these noiseless regions, the excess
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Figure 2.5: Excess risk as a function of the number of samples, under optimal regularisation
λ⋆ = Θ(n−ℓ⋆). Solid lines correspond to the predictions from corollary 2.1.1. Points are
simulations conducted with the python scikit-learn KernelRidge package [Ped+11]. In
simulations, the best λ⋆ was determined using python scikit-learn GridSearchCV cross
validation package [Ped+11]. Note that because cross validation is not adapted to small
training sets, a few discrepancies are observed for smaller n. Dashed lines represent the slopes
predicted by corollary 2.3.1, with the colours in correspondence to the regimes in fig. 2.4.
(Top) excess error. (Bottom) Optimal λ⋆. Note the noiseless case has λ⋆ = 0. Plot from
[Cui+21]
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Figure 2.6: Excess error rate γ in the noisy regime n ≫ σ−1/(γB(ℓ, q) − γV(ℓ, q)) as a function
of (ℓ, q) given by theorem 2.3.2. for r ≥ 1/2 (Left) and r ∈ [0, 1/2) (Right). The explicit
crossover points ℓ⋆, q⋆, q̂ are defined in eq. (2.53) as a function of the source r and capacity α
exponents. Plot from [DLM24].

error is therefore dominated by a fast decay. This phenomenon, where the noise variance is
diluted over the dimensions of lesser importance, is connected to benign overfitting [Bar+20;
TB23].

2.3.2 Random features ridge regression rates

Although more involved, a similar analysis can be carried over on the deterministic equivalent
of the random features excess risk from theorem 2.1.1.

Theorem 2.3.2 (RFRR excess risk rates). Under source and capacity conditions eq. (2.44),
regularisation λ = Θ(n−ℓ−1) and width p = Θ(nq) scaling, the deterministic equivalent rate
from eq. (2.17) is given by:

Rn,p(σ
2, α, r, ℓ) = Θ

(
n−γB(ℓ,q) + σ2n−γV(ℓ,q)

)
= Θ

(
n−γ(ℓ,q)

)
, (2.50)

where γ(ℓ, q) = γB(ℓ, q) ∧ γV(ℓ, q) for non-zero noise variance σ2 ̸= 0, otherwise γ(ℓ, q) =
γB(ℓ, q). The exponents γB and γV are respectively the decay rates of the bias and variance
terms eqs. (2.18) and (2.19), and are explicitly given by

γB =

[
2α

(
ℓ

α
∧ q ∧ 1

)
(r ∧ 1)

]
∧
[(

2α

(
r ∧ 1

2

)
− 1

)(
ℓ

α
∧ q ∧ 1

)
+ q

]
, (2.51)

γV = 1−
(
ℓ

α
∧ q ∧ 1

)
. (2.52)

In particular, note these reduce to the kernel rates from theorem 2.3.1 when q → ∞.
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We refer the interested reader to [DLM24] for a derivation of these rates from theo-
rem 2.1.1. Again, the expressions in eq. (2.51) are easier to visualise in a diagram. Figure 2.6
shows the excess risk exponent γ(ℓ, q) as a function of the parameters ℓ and q, in the case
where σ2 ̸= 0 for r ≥ 1/2 (left) and r < 1/2 (right). Note that the key difference between
the diagrams is the presence of an additional region for r ≥ 1/2.25 Defining the following
shorthand:

ℓ⋆ =
α

2α(r ∧ 1) + 1
, q⋆ = 1− ℓ⋆(2r ∧ 1), q̂ =

1

α(2r ∧ 1) + 1
= q⋆ ∨

1

α + 1
(2.53)

we can identify two main regions in the (ℓ, q) plane, corresponding to a trade-off between
the bias γB and variance γV terms:

(a) Variance dominated region (γV < γB): if ℓ > ℓ⋆, q > q̂ and p > λ, the excess risk
is dominated by the variance term, provided the number of samples is large enough
n≫ σ−1/(γB(ℓ, q) − γV(ℓ, q)). Inside this region it is possible to further distinguish between
two regimes:

• Slow decay regime (orange and brown): for ℓ < α and q < 1 (p ≪ n), γV =

1− (ℓ/α ∧ q), hence the decay depends on the interplay between regularization
strength and number of random features and it is slower as (ℓ/α ∧ q) increases;

• Plateau regime (red): for ℓ ≥ α and q ≥ 1 (p ≥ n) the excess risk converges to a
constant value and does not decay as n increases.

(b) Bias dominated region (γV > γB): if ℓ < ℓ⋆, q < q̂ and p < λ, the excess risk is
dominated by the bias term, whose decay is faster as (ℓ/α ∧ q) increases (cyan, emerald
and teal).

Analogously to the discussion in section 2.3.1 for the KRR case, one can also identify a
noiseless regime, valid when n < σ−1/(γB(ℓ, q) − γV(ℓ, q)), with the corresponding cross-overs to
the noisy regime as n increases. For conciseness, we omit the details here and refer the
interested reader to [DLM24] for a complete account.

As in the KRR setting, one may further ask how to optimally tune the regularisation
and width scales in order to achieve the fastest decay of the excess risk. This is obtained by
optimising over ℓ and q in the formula above.

Corollary 2.3.2 (Optimal rates). The optimal excess risk rate achieved by RFRR under
source and capacity conditions eq. (2.44), regularisation λ = Θ(n−ℓ−1) and width p = Θ(nq)

25Recall that these two cases correspond to the target function f⋆ belonging (r ≥ 1/2) or not (r < 1/2) to the
RKHS spanned by the asymptotic kernel
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is given by:

γ⋆ = max
ℓ,q

γ(ℓ, q) =
2α(r ∧ 1)

2α(r ∧ 1) + 1
, (2.54)

and it is attained for:λ = λ⋆ = n−(ℓ⋆−1)

p ≥ p⋆ = nq∗ = λ⋆
for r ≥ 1/2, (2.55)

λ = λ⋆

p ≥ p⋆ = (λ−1
⋆ n)

1/α
or

λ ≤ λ⋆

p = p⋆ = (λ−1
⋆ n)

1/α
for r < 1/2 (2.56)

corresponding to the bold red line (—) in fig. 2.6. In particular, the minimal number of
random features p⋆ = nq⋆ required to achieve the optimal rate γ⋆ is given by:

q⋆ = 1− α(2r ∧ 1)

2α(r ∧ 1) + 1
(2.57)

and corresponds to the bold red dot (•) in fig. 2.6.

Remark 2.3.2 (Relationship with the literature). Theorem 2.3.2 and corollary 2.3.2 relate
to different results in the source & capacity and neural scaling law literature.

• Minimal width: As expected, the optimal excess risk for RFRR in the noisy regime
are consistent with corollary 2.3.1 and the minimax optimal rates from [CD07]. An
important question in the context of the random features approximation of kernels is:
what is the minimal number of random features p⋆ = nq⋆ in order to achieve the minimax
optimal rate in eq. (2.54)? This question has been studied in several works in the literature
[CMT10; Yan+12; RR08; Bac17b; RR17]. In particular, the most refined results showed
that for a target in the RKHS r ≥ 1/2, it suffices to take p ≥ p0 = O(nq0) with:

q0 =
α + 2r − 1

2αr + 1
(2.58)

to achieve the minimax rate Rn,p = Θ(n− 2αr
2αr+1 ). The result in corollary 2.3.2 shows

that this rate can indeed be achieved with a smaller number of features when r > 1/2,
since

q0 − q⋆ =
2(1− r)(α− 1)

2αr + 1
> 0, for all α > 1. (2.59)

• Neural scaling laws: Motivated by the neural scaling laws literature, different recent
works have turned to the study of linear models under source and capacity conditions
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as a playground to understand the emergence of different bottlenecks in the excess
error rates [Bah+24; MRS22].

The model studied in these works is given by ridge regression on data yi = ⟨θ⋆, xi⟩
with x ∼ N (0, diag((d/k)α)) and θ⋆ ∼ N (0, 1/dId) with a linear projection model
f(x; a,W0) = ⟨a,W0x⟩, where W0 is an i.i.d. Gaussian matrix. Note this model is
a particular case of the model discussed here, corresponding to a linear feature map
and random target function. Moreover, since the variance of the target is constant,
the source is entirely determined by the capacity α of the asymptotic kernel, here
controlled by the decay of the covariance of the input data.

The approximation limit from Corollary 2.1.2 and the kernel limit from Corollary
2.1.1 are known in this literature as Variance and Resolution limited regimes, respectively
[Bah+24]. They correspond precisely to the bottlenecks in the excess risk arising
from the limited approximation capacity of the random feature model or the limited
availability of training data. The rates in the variance limited regime can also be
obtained from Theorem 2.3.2, and correspond to particular cases in fig. 2.6. We refer
the reader to the Appendix E of [DLM24] for a detailed discussion of the relationship
between these two literatures.

2.4 High-dimensional bottlenecks

So far, our results were agnostic to the covariate distribution µx, as they only appear indirectly
in the definition of the Friedholm operator T in eq. (2.6). For instance, the covariate
dimension d does not appear in the deterministic equivalents of theorem 2.1.1. To under better
the limitations of learning with high-dimensional random features, we need to explicitly
connect Σ to µx.

Consider the Gaussian i.i.d. case µx = γd. The space L2(γd) admits the following
orthogonal decompositions:

L2(γd) =
⊕
m≥0

Vm (2.60)

where Vm are the linear subspaces spanned by the Hermite tensors Hα(x) =
∏d

j=1 hαj
(xj)

of degree m = |α| =
∑d

j=1 αj , where (hm)m≥0 are the normalised probabilist Hermite
polynomials. The dimension of these linear subspaces are given by:

dim(Vm) =

(
d+m− 1

m

)
. (2.61)

Therefore, in this basis the decomposition of the target function in eq. (2.9) can be equiva-
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lently written in this basis as:

f⋆(x) =
∞∑

m=0

∑
α∈Zd

+

|α|=m

cα(f⋆)Hα(x). (2.62)

with the coefficients cα quantifying how much of the total energy of the target ||f⋆||2γd =∑
α c

2
α lies in each subspace Vm. The random features ridge predictor in eq. (2.4) is a linear

operator y ∈ Rn 7→ âλ(X, y) ∈ Rp mapping the training data into the column space of Φ,
which—assuming Φ is full rank26—is a linear subspace of dimension rank(Φ) = min(n, p). A
simple power-counting argument then suggests that learning the component of the target in
subspace Vm requires min(n, p) = O(m), with the smaller of n and p acting as the bottleneck
for approximating Vm. Consequently, fitting all components up to m ≤ κ requires:

min(n, p) ≃
κ∑

m=0

(
d+m− 1

m

)
= O(dκ) (2.63)

This intuition was made precise in the following result in [MMM22].

Theorem 2.4.1 ([MMM22], informal). Let δ > 0. With min(n, p) = O(dκ+δ), the random
features predictor in eq. (2.4) can learn at best a degree κ approximation of the target function
f⋆. In other words:

E
[
||f(x; âλ,W0)− f⋆(x)||22

]
= ||P>κf⋆||L2(γd) + od(1) (2.64)

where P>κ is the orthogonal projector into the space
⊕

m>κ Vm of polynomials of degree
larger than κ, i.e. ||P>κf⋆||L2(γd) =

∑
|α|>κ c

2
α.

In other words: for high-dimensional isotropic data, RFRR is simply performing a
polynomial regression of the target function.

Remark 2.4.1. The key ingredient in the argument above is that the data distribution is
isotropic. This implies that the target will have energy uniformly spread over the different
frequencies in the orthogonal decomposition. Similarly, since the features are not adapted to
the structure of the data, to fit a given frequency it requires spanning the full space to be
fitted.

2.4.1 Gaussian equivalence for RFRR

Themin(n, p) = O(dκ+δ) in theorem 2.4.1 ensures that the number of samples and parameters
are large enough such that the full subspace Vκ is learned. A more quantitative descriptions of

26This holds almost surely for Gaussian covariates and full-rank W0.
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the transition can be obtained with a finer characterisation of the feature covariance matrix
at the scale n, d = Θ(dκ). For simplicity of exposition, consider the case κ = 1, known as the
proportional regime.

Conditionally on W0, the pre-activations zk = ⟨w0,k, xi⟩ are Gaussian random variables
with zero mean and covariance 1/d⟨wk,0, wk′,0⟩. Therefore, it is also natural to expand the
feature matrix Φik = σ(⟨w0,k, xi⟩) in the basis of Hermite polynomials:

Φik =
∞∑

m=0

µmhm(⟨w0,k, xi⟩) (2.65)

Therefore, the (finite p) feature covariance matrix Σ̂ ∈ Rp×p is given by:

Σ̂kk′ = Ex∼[σ(⟨w0,k, x⟩)σ(⟨w0,k′ , x⟩)] =
∞∑

m=0

µ2
m

(
⟨w0,k, w0,k′⟩

d

)m

(2.66)

Note that since the neurons are independent, the scalar product above is Θd(1) for j = k and
O(d−1/2) for j ̸= k, meaning that the frequencym has weight Θ(d−m/2) in the decomposition
of the off-diagonal components. In other words, the high-frequency components of the
population covariance decay faster as d → ∞. This implies that in order to compute the
excess risk from theorem 2.1.1 in the proportional high-dimensional limit it suffices to keep
the leading order terms in this expansion:

Σ̂ ≃ µ2
01p1

⊤
p + µ2

1W0W
⊤
0 + µ2

⋆Ip (2.67)

where µ2
⋆ =

∑
m≥2 µ

2
m. Higher-order terms, as well as corrections to the diagonal term, are

negligible in the limit.27

Note that the features covariance in eq. (2.67) is equivalent to the one of a model with
Gaussian features:

G = µ01p + µ1XW
⊤
0 + µ⋆Z ∈ Rn×p (2.68)

where Z is a Gaussian matrix with i.i.d. Gaussian entries N (0, 1). This linearisation of the
features covariance is known as Gaussian equivalence [Gol+22].

2.5 Beyond ridge: convex ERM

The discussion thus far has focused on the square loss and quadratic penalty. This choice
considerably simplifies the analysis, since the empirical risk minimisation problem in eq. (2.1)

27This approximation should be understood in operator norm, since what matters for the risk in theorem 2.1.1
is the spectrum.
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admits a closed-form solution, effectively reducing it to the study of random matrices.

In this section, we extend these ideas to the setting of convex ERM, i.e. eq. (2.1) with
convex loss ℓ and regulariser r. This includes several important cases, such as the logistic
/ cross-entropy loss ℓ(y, z) = log(1 + e−yz), the hinge loss ℓ(y, z) = max(0, 1− yz), and ℓq
penalties r(a) = ||a||q for q ≥ 1.

As discussed in section 2.1.2, the central technical tool in the ridge analysis was the
Gaussian universality of the features — the idea that, for the purpose of analysing excess risk,
the non-linear features can be asymptotically replaced by correlated Gaussian variables. In
the case of RFRR, this can be viewed as an instance of universality in random matrix theory
[TV11]. The starting point for extending the analysis to the non-quadratic case is to adapt
the idea of Gaussian equivalence.

From now on, we restrict the discussion to the proportional high-dimensional regime,
where d→ ∞ with n, p = Θ(d).28

2.5.1 Gaussian equivalence

As a starting point, let’s formalise what we mean by Gaussian equivalence in the context of
more general empirical risk minimisation problems. Consider the empirical risk minimiser

âλ(Φ, y) = min
a∈Rp

n∑
i=1

ℓ (yi, ⟨a, φ(xi)⟩) + λr(a). (2.69)

under a general convex loss function ℓ and penalty r, where φ(x) = σ(W0xi). For simplicity,
assume that the labels were drawn from a Gaussian single-index model (definition 1.3.2):

yi = g(⟨θ⋆, xi⟩), xi ∼ N (0, 1/dId), i.i.d. (2.70)

Our goal is to compute the population risk

R(âλ) = Ex∼γd [ℓ (g(⟨θ⋆, x⟩), ⟨âλ, φ(x)⟩)] (2.71)

for the minimiser âλ in the high-dimensional asymptotic limit. The challenge, as before, is
that the features φ(x) = σ(W0x) are a non-linear functions of the covariates. Inspired by our
discussion from section 2.4.1, consider the Gaussian equivalent model with linearised features:

gi = µ01p + µ1W0xi + µ⋆zi (2.72)

28Extending the ideas that follow to polynomial regimes is an open research question.
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where zi ∼ N (0, Ip) independently from xi and µ0, µ1, µ⋆ are related to the Hermite decom-
position of the non-linearity σ(t):

µ0 = E[σ(ξ)], µ1 = E[σ(ξ)ξ], µ⋆ =
√

E[σ(ξ)2]− µ2
0 − µ2

1 (2.73)

for ξ ∼ N (0, 1). In other words, we have that, to leading order the equivalent Gaussian
model has the same second-order statistics than the full non-linear model: gi ∼ N (0, Σ̂)

with Σ̂ = E[φ(x)φ(x)⊤]. Then, Gaussian equivalence states that in the high-dimensional
limit, the risks of these two models are exactly the same.

Theorem 2.5.1 (Gaussian equivalence for RFRR, informal). In the proportional high-
dimensional limit d→ ∞ with n, p = Θ(d), the asymptotic population and empirical risks of
these two problems coincide:

|R(âλ(Φ, y))−R(âλ(G, y))|
P−→ 0

|R̂n(âλ(Φ, y))− R̂n(âλ(G, y))|
P−→ 0 (2.74)

This result was first conjectured in [Ger+20], where the equivalent model was analysed
using the replica method from statistical physics to characterise the limiting risk, and later
proved in [HL22; MS22].

The idea behind the proof of theorem 2.5.1 is that the risk in eq. (2.71) depends on
the covariates only through the joint distribution of the pre-activations z = ⟨θ⋆, x⟩ and
s = ⟨âλ, φ(x)⟩. It therefore suffices to establish their asymptotic joint Gaussianity. A naive
approach would be to invoke the central limit theorem for s, since it is expressed as a sum of
random variables. The difficulty, however, is that s involves not an arbitrary a ∈ Rp but the
optimiser âλ(X, y) of the empirical risk, making it a correlated rather than independent sum.
Handling this correlation is the main challenging in the proof.

The proof in [HL22; MS22] follows this scheme, breaking the argument in two steps.
First, one argues that for a fixed predictor a ∈ Sp in some constraint set Sp ⊂ Rp (e.g. the
set of ||a||∞ <∞), the pre-activation s = ⟨a, φ(x)⟩ satisfies a central limit theorem type of
result:

lim
d→∞

sup
a∈Rp

∣∣∣E [h (⟨a, φ(x)⟩)]− E [h (⟨a, g⟩)]
∣∣∣ = 0 (2.75)

for any bounded Lipshchitz function h : R → R, where g is the Gaussian equivalent. This
type of pointwise CLT was first established for random features in [Gol+22; HL22].

The second step is to show that the CLT implies the universality of the risk in eq. (2.74).
In [HL22], this was achieved using a Lindeberg interpolation argument, in which each
feature vector φ(xi) in the training set is progressively replaced by a Gaussian vector gi. This
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substitution allows the CLT to be applied to the modified predictor. The cumulative error
introduced in both the predictor and the loss can then be controlled, and shown to remain
negligible asymptotically, even after all features in the training set have been swapped.

The strength of this two-step proof scheme is that it allows to establish universality
of the risk independently of the particular feature map, as proposed in [MS22]. In other
words, to prove the universality of the risk under the general assumption that the features
satisfy a point-wise CLT. This allows to reduce the proof of universality of the empirical
risk minimiser to proving the point-wise CLT for the features of interest, independently of
the optimisation problem.

2.5.2 Gaussian covariate model

Under Gaussian equivalence, investigating the risk of the ERM problem in eq. (2.1) is
equivalent to studying a model with correlated Gaussian features. This motivate us to
introduce the following Gaussian covariate model [Lou+21a]:

âλ = argmin
a∈Rp

n∑
i=1

ℓ(g(⟨θ⋆, ui⟩), ⟨a, vi⟩) + λr(a) (2.76)

where the pairs ui ∈ Rd and v ∈ Rp are jointly Gaussian vectors:

(ui, vi) ∼ N

([
0d

0p

]
,

[
Ψ Φ

Φ⊤ Ω

])
, i.i.d. (2.77)

with Ψ ∈ Rd×d and Ω ∈ Rp×p positive-definite symmetric matrices and Φ ∈ Rp×d. The
general covariance structure is motivated by the fact that both the data and model features
could be drawn from different feature maps u = φ⋆(x) and v = φ(x), e.g. two random
feature maps with different widths.

Remark 2.5.1 (Equivalent model). By Gaussian conditioning, we can always rewrite (u, v)

in terms of independent Gaussian vectors z ∼ N (0, Id) and x ∼ N (0, Ip):

u = Φ⊤Ω−1/2x+ (Ψ− Φ⊤Ω−1Φ)1/2z (2.78)

v = Ω1/2x. (2.79)

This give us a decomposition of the data features u in terms of a piece which is observed
by the statistician (proportional to x) and a part which is unobserved (proportional to z),
playing the role of an effective structured noise. Since the label distribution only depends
on the pre-activation, we can rewrite: ⟨θ⋆, u⟩ = ⟨β⋆, v⟩ + ξ where β⋆ = Ω−1Φθ⋆ is the
signal component and ξ = ⟨θ⋆, (Ψ− Φ⊤Ω−1Φ)1/2z⟩ is the effective noise induced by model
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mispecification. This decomposition can be useful in some contexts, e.g. in the study of the
best achievable (Bayes-optimal) error in this model [Cla+23b].

Since the features are Gaussian, one can leverage techniques from high-dimensional
probability to derive a sharp characterisation of the risk in the high-dimensional limit.

Theorem 2.5.2 ([Lou+21a], informal). In the proportional high-dimensional limit where
d→ ∞ with n/p → α > 0 and p/d → γ > 0,

R(âλ)
P−→ R(α, γ, λ) = E[ℓ(g(z), s)] (2.80)

where (z, s) ∈ R2 are jointly Gaussian variables:

(z, s) ∼ N

([
0

0

]
,

[
ρ m⋆

m⋆ q⋆

])
(2.81)

with ρ = limd→∞⟨θ⋆,Ψθ⋆⟩ ∈ R+ and (m⋆, q⋆) ∈ R2
+ the unique solutions of the following

system of self-consistent equations:
v̂ = −αEη

∫
dy Z⋆

(
y, m√

q
η, ρ− m2

q

)
∂ωfy(y,

√
qη, v)

q̂ = αEη

∫
dy Z⋆

(
y, m√

q
η, ρ− m2

q

)
fy(y,

√
qη, v)2

m̂ = αEη

∫
dy Z⋆

(
y, m√

q
η, ρ− m2

q

)
fy(y,

√
qη, v)

(2.82)


v = Eξ,θ⋆

[
∇b · fa

(
m̂Ω−1/2Φθ⋆ + (q̂Ω)1/2ξ, v̂Ω

)]
q = Eξ,θ⋆

[
||fa

(
m̂Ω−1/2Φθ⋆ + (q̂Ω)1/2ξ, v̂Ω

)
||22
]

m = Eξ,θ⋆

[
⟨fa
(
m̂Ω−1/2Φθ⋆ + (q̂Ω)1/2ξ, v̂Ω

)
, θ⋆⟩

] (2.83)

In these equations, η ∼ N (0, 1), ξ ∼ N (0, Ip) independently, and we have defined the
short-hand:

fy(y, ω, v) =
1

v

(
ω − proxvℓ(y,·)(ω)

)
(2.84)

fa(b, A) = proxr(A−1/2·)(A
−1/2b) (2.85)

Z⋆(y, ω, v) = Ez∼N (ω,V ) [Py(y|z)] (2.86)

where proxτf (x) = argminz∈Rp

{
1
2τ
||z − x||22 + f(z)

}
is the proximal operator.

Remark 2.5.2 (Intuition). Despite cumbersome, this result simply states that in the high-
dimensional limit the joint statistics of the pre-activations z = ⟨θ⋆, u⟩ and s = ⟨âλ, v⟩ can be
fully characterised by a set of scalar equations. Given a specific choice of ℓ, r, θ⋆,Py (or g)
and Ψ,Ω,Φ, these can be efficiently integrated numerically. Since the ERM problem for the
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Figure 2.7: (Left) Population (blue) and empirical (green) misclassification risk for logis-
tic regression as a function of the normalised width p/n for logistic regression ℓ(y, z) =
log(1 + e−yz) with random features with σ = sign activation at fixed sample complexity
n/d = 3 and vanishing ridge penalty λ→ 0+. Solid lines denote theoretical results, as derived
from theorem 2.5.2, dots denote simulations of the full problem, while crosses denote simu-
lations of the Gaussian equivalent model, with d = 200. (Right) Interpolation threshold in
the sample complexity n⁄d vs. normalised width p/n plane, for two choices of random features
weight ensembles, Gaussian (red line) and orthogonal (blue line). Figures from [Ger+20]

Gaussian covariate model only depends on the high-dimensional covariates (u, v) through
the pre-activations (z, s), this suffices to characterise the asymptotic risk.

Corollary 2.5.1 (ℓ2 penalty). Consider the ℓ2 penalty r(a) = ||a||22. Then, the last three
equations of theorem 2.5.2 considerably simplify:

v = Tr {Ω(λIp + v̂Ω)2}

q = Tr
{[
q̂Ω + m̂2Φθ⋆θ

⊤
⋆ Φ

⊤]Ω (λIp + v̂Ω)−2}
m = m̂⟨Φθ⋆, (λIp + v̂Ω)−1Φθ⋆⟩.

(2.87)

In particular, letting Ω =
∑p

j=1 ξ
2
j vjv

⊤
j , this depends only on the asymptotic joint statistics

of ξ2j and ⟨vj,Φθ⋆⟩.

A similar statement to theorem 2.5.2 holds for the asymptotic empirical risk, but we refer
the interested reader to [Lou+21a] for the details.

The asymptotic characterisation in theorem 2.5.2 was proven in [Lou+21a] using Gor-
don’s Gaussian min-max inequalities (CGMT) [Gor85; Sto13; OTH13], and can alternatively
be derived using the replica method from statistical physics. It encompasses several settings
of interest in the literature, such as logistic regression, M-estimators and the LASSO.

As an illustration of how theorem 2.5.2 can be combined with Gaussian equivalence,
fig. 2.7 (left) displays the empirical and population misclassification error of logistic regression
ℓ(y, z) = log(1 + e−zy) with a vanishing ridge penalty λ→ 0+, r(a) = ||a||22. The curves are
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Figure 2.8: Sketch of a possible pipeline to generate realistic synthetic data. Here, a generative
model is trained on a real data set, which can be used to generate realistic images from
Gaussian data (upper part of the diagram). To generate labels, a second network (lower-part)
is trained on the same data set to discriminate different classes. This defines a map from
the images to the label, which can be used to generate fake labels for the GAN generated
synthetic images. Figure from [Lou+21a].

obtained by solving the self-consistent equations of theorem 2.5.2 for the Gaussian equivalent
model with Ψ = 1/dId, Φ = µ1W0, and Ω = µ2

1W0W
⊤
0 + µ2

⋆Ip, where W0 is a Gaussian i.i.d.
matrix. The results show excellent agreement between theoretical predictions and numerical
simulations, both for the full non-linear model (•) and for its Gaussian equivalent (×). In this
setting, the interpolator corresponds to the maximum-margin solution [RZH03], which
is also the limit reached by gradient descent on the unregularised problem [Sou+18]. The
interpolation peak thus does not occur at p = n, but instead at the width where the network
becomes able to linearly separate the data. This separability threshold can be computed from
the theory and is shown in fig. 2.7 (right) for two choices of W0 ensemble: Gaussian and
orthogonal. Interestingly, although both ensembles yield the same asymptotic kernel, at
finite width and sample size orthogonal random features consistently outperform Gaussian
ones — a fact well documented in practice [CRW17].

2.6 Towards realistic data

Motivated by the discussion in section 2.5.1, one can ask to what extent Gaussian universality
holds beyond random feature maps on Gaussian data. Theorem 2.5.2 allow us to numerically
investigate this question in two scenarios.

Realistic synthetic data — The first scenario is the one of realistic feature maps on
synthetic data. In this case, we assume that the labels are drawn from a generative model on
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Figure 2.9: Misclassification population risk (top) and empirical training loss (bottom) as a
function of the sample complexity α = n/p for logistic regression on a learned feature map
trained on dcGAN-generated CIFAR10-like images labelled by a trained fully-connected
neural network (see Appendix in [Lou+21a] for the details on the architecture), with van-
ishing ℓ2 regularisation. The different curves compare featured maps at different epochs of
training. The theoretical predictions based on the Gaussian covariate model (full lines) are
in very good agreement with the actual performance (points). Figure from [Lou+21a].

random Gaussian data:

yi = f⋆(zi; Θ⋆) = g (⟨a⋆, φ⋆(xi;W⋆⟩) , xi ∼ N (0, 1/dId) (2.88)

Here, f⋆(xi; Θ⋆) may denote any parametric generative model, but for concreteness one
can think of a deep neural network generative model, such as a Generative Adversarial
Network (GAN) [Goo+14]. In the second equality, the model is further decomposed into
the last-layer weights a⋆, the network features φ⋆ with trained weights W⋆, and a decoding
map g : R → Y . Therefore, the map φ⋆ : RD → Rd can be thought as mapping a Gaussian
latent variable to a realistic image, see fig. 2.8 for a possible pipeline for this process.

This process can be used to generate a realistic dataset D = (ui, yi) ∈ Rd × Y : i ∈ [n]

with ui = φ⋆(xi), which in turn serves as input for an ERM problem of interest. Since
arbitrarily large datasets can be generated, the population covariances Ψ,Ω,Φ appearing
in theorem 2.5.2 can be estimated to any desired precision, making it possible to directly
compare the theoretical predictions with finite-size numerical experiments based on this
pipeline. Note that there is no reason for Gaussian universality to hold in this setting.
Nevertheless, this pipeline was extensively studied in [Gol+22; Lou+21a], showing that
theorem 2.5.2 can surprisingly capture the behaviour of the learning curves produced by
this procedure.
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Figure 2.10: Population (top) and empirical (bottom) risks as a function of the number of
samples n for ridge regression on the Fashion-MNIST data set, with vanishing regularisation
λ→ 0+. In this plot, the model feature map φ is a 3-layer fully-connected neural network
with p = 2352 hidden neurons trained on the full data set with the square loss. Different
curves correspond to the feature map obtained at different stages of training. Simulations
are averaged over 10 independent runs. Figure from [Lou+21a].

Real data — The challenge of applying theorem 2.5.2 to real data is that the equations
depend on both the target weights θ⋆ and the target-model feature covariance Φ — which
are not accessible for a real data set. However, in the particular case of ridge regression, these
quantities only appear in the equations of theorem 2.5.2 in the particular combination Φθ⋆,
see corollary 2.5.1. This implies the following corollary.

Corollary 2.6.1 (Universality of linear target). Consider ridge regression on the the Gaussian
covariate model ℓ(y, z) = (y − z)2 and r(a) = ||a||22 with linear target function g(z) = z.
Then, the asymptotic performance given by theorem 2.5.2 is the same for any target feature
ui and target weights θ⋆ that exactly interpolates the data yi = ⟨θ⋆, ui⟩, ∀i ∈ [n].

Although this result might seen surprising at first sight, it is quite intuitive. Indeed, the
information about the target model only enters the Gaussian covariate model eq. (2.76)
through the statistics of ⟨θ⋆, u⟩. For a linear target g(z) = z, this is precisely given by
the labels. Under this assumption, this result allow us to estimate empirically the relevant
quantities from the data. For that, let D = {(xi, yi) ∈ Rd+1 : i ∈ [ntot]} denote some real
data, e.g. MNIST or CIFAR10, which we assume has been centred. Then, given a feature
map of interest φ : Rd → Rp and denoting vi = φ(xi), we can empirically estimate

Ω =
ntot∑
i=1

viv
⊤
i

ntot

, ρ =
1

ntot

ntot∑
i=1

(yi)
2 , Φθ⋆ =

1

ntot

ntot∑
i=1

yivi . (2.89)

which allow us to evaluate the equations in theorem 2.5.2. This was extensively studied
in [Lou+21a] for different data sets. As an illustration of these results, consider a trained a
3-layer fully connected neural network with ReLU activations on the full Fashion-MNIST
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dataset to distinguish clothing worn above vs. below the waist [XRV17]. The model feature
map φ : R784 → Rp is obtained by removing the last layer. Figure 2.10 reports the test and
training errors of the ridge estimator on a subsampled batch n < ntot of Fashion-MNIST
images. The learning curve obtained from simulations shows remarkable agreement with
the theoretical prediction given by the corresponding Gaussian covariate model.

Recall from section 2.2 that for the square loss and λ → 0+, the interpolation peak is
located at the point where the linear system becomes invertible. Interestingly, fig. 2.10
shows that the fully connected network progressively learns a low-rank representation of the
data during training. This can be directly verified by examining the spectrum of Ω, whose
number of zero eigenvalues increases over time: from a full-rank matrix at initialization to
rank 380 after 200 training epochs.

2.6.1 Limitations of Gaussian equivalence

The empirical results discussed in section 2.6 naturally raise the question of how far Gaussian
universality extends in high-dimensional asymptotics. A difficulty in investigating this is
that there are relatively few settings where exact high-dimensional limits for the risk can be
computed outside the Gaussian case. An exception is provided by Gaussian mixture models
(GMM):

µx =
∑
c∈C

pcN (µc,Σc) (2.90)

with mixture weights pc ∈ [0, 1] satisfying
∑

c∈C pc = 1. The proportional asymptotic limit
of the risk for linear classifiers trained on GMM data was established in [Lou+21b], in a
result analogous to theorem 2.5.2 for GMM covariates. This provides a useful testbed for
universality, as it permits a direct comparison of the two asymptotic formulas under the
same loss and regularisation. This yields a well-defined mathematical question: under what
conditions do the asymptotic risks predicted by these two formulas agree?

This question was investigated in [Ger+24; Pes+23]. The first work considered the case
of random labels, where the problem depends only on the geometry of the covariates. In this
setting, the asymptotic training loss of linear classifiers admits a closed-form characterisation
that coincides exactly with the Gaussian covariate model for a broad class of input distributions,
including arbitrary mixtures of Gaussian components. In the interpolation limit λ → 0+,
universality becomes even stronger: the asymptotic loss is independent of the data covariance
and reduces to the prediction of the isotropic Gaussian model.

When the task is structured and the labels are correlated with the inputs, universality is
more fragile. This case was studied in [Pes+23] in a model where labels are generated by a
single-index function of the covariates, y = g(⟨θ⋆, x⟩). Here, the conditions under which
Gaussian universality holds are restrictive: in particular, if the mixture is homoscedastic and
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the target weights θ⋆ are uncorrelated with the cluster means µc and covariances Σc, the
asymptotic training and generalisation errors coincide with those of the Gaussian covariate
model with matching second order statistics. Conversely, universality breaks down when
the task correlates with the mixture structure or under strong heteroscedasticity, in which
case the limiting risk departs systematically from the Gaussian prediction. We refer the
reader interested in the details to [Ger+24; Pes+23].

2.7 Going deeper

In Section 2.6 we have discussed empirical evidence showing that Gaussian universality
holds beyond random features maps. In these cases, the features statistics were computed
numerically. In this section, we discuss another example where we can exactly characterise
the Gaussian equivalent model, which is the extension of the random features model to the
multi-layer case:

φ
(
x; {Wℓ}ℓ∈[L]

)
= σL (WLσL−1 (· · ·W2σ1 (W1x))) . (2.91)

where σ1, · · · , σL are non-linear scalar activation functions acting entry-wise andW1 ∈ Rp1×d

and Wℓ ∈ Rpℓ×pℓ−1 for ℓ ∈ [L] are deterministic weight matrices.
Consider two such deep feature maps φ

(
x; {Wℓ}ℓ∈[L]

)
and φ⋆

(
x; {Vℓ}ℓ∈[L⋆]

)
, with poten-

tially different weights and activation functions σℓ, σ⋆
ℓ , and without loss of generality L ≤ L⋆.

Then, one can derive a similar linearisation the one discussed in section 2.4.1 layer-wise,
under the following simplifying assumptions.

Assumption 2.7.1. Consider the following simplifying assumptions.

• Gaussian covariates: x ∼ N (0,Ω0) with ||Ω0||op <∞.

• The activation functions σℓ, σ⋆
ℓ are Lipschitz functions and such that the feature map is

centred E [φ(x)] = 0 and E [φ⋆(x)] = 0.

• All the internal widths pℓ of Wℓ, Vℓ are equal.

• The rows wℓ, vℓ of Wℓ, Vℓ are i.i.d. sub-Gaussian random vectors with mean zero and
covariances

Cℓ := pℓE
[
wℓw

⊤
ℓ

]
, C̃ℓ = pℓE

[
vℓv

⊤
ℓ

]
, C̆ℓ := pℓE

[
wℓv

⊤
ℓ

]
,

with ||Cℓ||op + ||C̃ℓ||op + ||C̆ℓ||op ≲ 1. Moreover, they are asymptotically orthogonal:
let w,w′ ∈ Rℓ−1 be two independent copies of a row of Wℓ. Then, ⟨w,w′⟩ = O(d−1/2)

(similarly for Vℓ).
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Conjecture 2.7.1 ([Sch+23; Sch+24b], Gaussian equivalence for deep RFs). In the propor-
tional high-dimensional limit where p→ ∞ at fixed pℓ = Θd(d) for all ℓ ∈ [L], the features
populations covariances Ω,Φ,Ψ:

Ψ = E[φ⋆(x)φ⋆(x)
⊤], Φ = E[φ(x)φ⋆(x)

⊤], Ω = E[φ(x)φ(x)⊤] (2.92)

can be asymptotically approximated by the linearised covariances:

||Ω− Ωlin||F + ||Ψ−Ψlin||F + ||Φ− Φlin||F ≲ 1 (2.93)

where Ψlin,Φlin,Ωlin are defined as the last iterate ℓ = L of the following recursion:

Ωlin
ℓ = (κ1ℓ)

2WℓΩ
lin
ℓ−1W

⊤
ℓ + (κ∗ℓ)

2Ipℓ

Ψlin
ℓ = (κ̃1ℓ)

2VℓΨ
lin
ℓ−1V

⊤
ℓ + (κ̃∗ℓ)

2Ipℓ

Φlin
ℓ = κ1ℓ κ̃

1
ℓWℓΦ

lin
ℓ−1V

⊤
ℓ + (κ̆∗ℓ)

2Ipℓ ,

(2.94)

with Ωlin
0 = Ψlin

0 = Φlin
0 = Ω0 the input covariance. The coefficients {κ1ℓ , κ̃1ℓ , κ∗ℓ , κ̃∗ℓ , κ̆∗ℓ} are

defined by the recursion

κ1ℓ := E [σ′
ℓ(Nℓ)] , κ̃1ℓ := E

[
σ̃′
ℓ(Ñℓ)

]
(2.95)

and

κ∗ℓ =
√
E[σℓ(Nℓ)2]− rℓ(κ1ℓ)

2

κ̃∗ℓ =

√
E[σ⋆

ℓ (Ñℓ)2]− r̃ℓ(κ̃1ℓ)
2

κ̆∗ℓ =

√
E[σℓ(Nℓ)σ⋆

ℓ (Ñℓ)]− řℓκ1ℓ κ̃
1
ℓ ,

(2.96)

where Nℓ, Ñℓ are jointly mean-zero Gaussian with E [N2
ℓ ] = rℓ, E

[
Ñ2

ℓ

]
= r̃ℓ, E

[
NℓÑℓ

]
= r̆ℓ,

with
rℓ = Tr

[
CℓΩ

lin
ℓ−1

]
, r̃ℓ = Tr

[
C̃ℓΨ

lin
ℓ−1

]
, r̆ℓ = Tr

[
C̆⊤

ℓ Φ
lin
ℓ−1

]
.

Finally, for L̃ ≥ ℓ ≥ L+ 1, define

Φlin
ℓ = κ̃1ℓΦ

lin
ℓ−1V

⊤
ℓ , (2.97)

with still κ̃1ℓ , κ̃∗ℓ just as before, and Ψlin
ℓ with the same recursion (2.94).

This conjecture generalises the prior results on Gaussian universality for ridge regression
discussed in Section 2.4.1. Although it is challenging to prove it in full generality, it can be
shown in the particular case of three-layer random features.
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Figure 2.11: Risk for ridge regression on a 1-hidden layer target function (p⋆/d = 2, σ⋆
1 = sign)

using a L−hidden layers model with widths pℓ = 4d and σℓ = tanh activation (left) or
σℓ(x) = 1.1× sign(x)×min(2, |x|) clipped linear activation (right), for depths 1 ≤ L ≤ 6.
The regularization is λ = 0.001. Solid lines represent theoretical curves evaluated from
theorem 2.5.2 and conjecture 2.7.1, while numerical simulations, averaged over 50 runs,
are indicated by dots. Despite sharing the same architecture, the use of different activations
induces different implicit regularizations. Figure from [Sch+23].

Theorem 2.7.1 ([Sch+24b]). Conjecture 2.7.1 holds under Assumption 2.7.1 for L = L⋆ = 2.

Combined with theorem 2.5.2, the linearisation in 2.7.1 can be used to study the asymp-
totic performance of models where both the target and hypothesis were drawn from a
deep random features model with structured weights. Recently, it has been empirically
observed that resampling the weights of trained neural networks from an ensemble that
partially preserves their statistics can retain the generalisation performance [Gut+24]. Con-
jecture 2.7.1 allows to study these rainbow networks, as they are known, in the case where
only second order statistics on the trained weights are retained. We refer the interested
reader to [Sch+24b], where the inductive bias of the Gaussian rainbow network ensemble,
as well as the high-dimensional bottlenecks implied by the linearisation of the features were
studied. In Figure 2.11, we illustrate the performance of deep random features in the case of
i.i.d. Gaussian weights.





3 | Networks away from initialisation

In Chapter 2, we analysed in detail the generalisation properties of two-layer neural networks
with fixed features. A key outcome of that discussion was that, due to the lack of adaptivity,
the network’s performance is insensitive to any structure present in the training data. For
instance, in Section 2.4 we showed that, for isotropic random data, random features ridge
regression is asymptotically equivalent to polynomial regression when both the width and
the sample size are fixed.

Improving on this requires the network to learn features, i.e. to adapt its basis to the
target task. Understanding this process at the same level of generality as for fixed-feature
networks remains challenging. Unlike the second-layer optimisation, the optimisation over
the first-layer weights in eq. (1.9) is non-convex. In practice, training is often carried out
using gradient-based methods with early stopping, which introduces implicit, algorithm-
dependent regularisation.

In this chapter, we discuss this problem in a simplified setting where the first-layer
weights are trained only for a few but large steps of gradient descent. Despite its simplicity,
this setting captures several key aspects of adaptivity and allows us to make precise the
connection between feature learning and the generalisation capacity of the model.

The results discussed in sections 3.2, 3.3 and 3.4.2 are based on [Dan+24a], while the
results discussed in section 3.4.3 are based on [Cui+24; Dan+25].

3.1 Learning features, one step at a time

Throughout this chapter, we focus on a regression problem with square loss and ℓ2 penalty,
for which eq. (1.9) reads:

min
(W,a)∈Rp(d+1)

1

n

n∑
i=1

(yi − f(xi;W, a))
2 + λ||a||22 (3.1)

69
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where we recall the reader we are interested in the class of width-p two-layer neural networks:

f(x;W, a) =
1
√
p

p∑
k=1

akσ (⟨wk, x⟩) . (3.2)

Note that we adopt a different normalisation from eq. (1.8), which, without loss of generality,
amounts to a redefinition of the readout weights. We also include weight decay on the
second-layer weights, but not on the first-layer.

In what follows, we assume that the data are sampled from a Gaussian multi-index model
as defined in definition 1.3.2. As discussed in section 1.3.1, multi-index functions are a rich
hypothesis class that captures the inductive bias that high-dimensional tasks often possess an
underlying low-dimensional structure. The isotropic Gaussian assumption on the covariates
further enables us to quantify precisely the benefits of feature learning, in comparison with
the untrained network whose bottlenecks were discussed in section 2.4.

Finally, consider the following step-wise training procedure for the ERM problem in
eq. (3.1).

Definition 3.1.1 (Step-wise training). Let η ∈ R+, T ∈ Z+, (W0, a0) ∈ Rp(d+1), D ={
(xi, yi) ∈ Rd+1 : i ∈ [N ]

}
denote the learning rate, training horizon, initial weights and

training data, respectively. Let N =
∑T

t=0 nt denote a partition of the training samples into
T + 1 batches of nt samples. Define Aη,T,λ : D 7→ (Ŵ , âλ) ∈ Rp(d+1) to be the following
step-wise training algorithm:

1. Train the first-layer weights for T steps with (one-pass) stochastic gradient descent on
the first T batches:

wt+1,k = wt − η∇w
1

nt

nt∑
i=1

(yi − f(xi;Wt, a0))
2 , 0 ≤ t ≤ T − 1 (3.3)

2. Train the second-layer weights on the last batch n := nT by ridge regression:

âλ = argmin
a∈Rp

1

n

n∑
i=1

(yi − f(xi;WT , a))
2 + λ||a||22 (3.4)

3. Return Ŵ =WT and âλ.

In particular, our analysis will assume the following balanced initialisation for the network
weights.

Assumption 3.1.1 (Balanced initialisation). We assume that the initial weights (W0, a0) are
drawn i.i.d. as a0,k ∼ Unif([−1/√p, 1/√p]) and w0,k ∼ Unif(Sd−1(

√
d)) with

a0,k = a0,p−k−1, w0,k = w0,p−k−1, k ∈ [p/2]. (3.5)
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Note this enforces that the initialisation is balanced f(x;W0, a0) = 0 and that for large width
p the initial SGD steps eq. (3.3) are in the mean-field regime [COB19].

Remark 3.1.1. A few comments on the setting and assumptions are in place.

• The step-wise training procedure in eq. (3.1) is a common simplification in the theo-
retical literature, e.g. [DLS22; Ba+22; Bie+22].

• The partition assumption D =
⋃

t∈[T+1]Dt in the training data means that each batch
of data is only seen by the gradient once. In this algorithm, known as one-pass SGD,
the stochastic gradients are unbiased estimates of the population (nt → ∞) gradient.

• Although the exact balanced assumption is useful, it can be generalised to an ap-
proximate balanced conditions in the limits we will consider in the following, i.e.
f(x;W0, a0) = od(1) with a0,k = O(1/√p) and ||wk||22 = O(d), ⟨w0,k, w0,k′⟩ = δkk′ .

3.2 Weak learnability

As discussed in remark 2.1.1, a sign of the lack of adaptivity of the network at initialisation
is that the (random) weights of the network are uncorrelated with the underlying structure
of the data. Therefore, a crucial question is whether this changes after training, i.e. does
Ŵ ∈ Rp×d meaningfully correlate with the indices W⋆ ∈ Rr×d? This notion was precisely
defined in definition 1.3.3, and is known as weak learnability.

3.2.1 One gradient step

In order to build intuition, we start our discussion of what can be (weakly) learned in a
single step T = 1. The first step update in eq. (3.3) can be writen as w1,k = w0,k + ηgk, where
gk ∈ Rd is the gradient at initialisation:

gk = − 2a0,k√
pn0

n0∑
i=1

yiσ
′(⟨w0,k, xi⟩)xi (3.6)

where we used that f(xi;W0, a0) = 0. For simplicity, consider the case where yi = g(⟨w⋆, xi⟩)
is a single-index function. The expected correlation between the gradient and the index can
be obtained with an argument almost identical to the one discussed in section 2.4.1:

E[⟨g, w⋆⟩] = −a0,k√
p

∞∑
m=0

cm+1µm+1

(
⟨w0,k, w⋆⟩

d

)m

(3.7)

where, as before µm = E[σ(z)hm(z)] and cm = E[g(z)hm(z)] are the coefficients of the de-
composition of σ, g in the basis of Hermite polynomials, respectively. Since 1/

√
d⟨w0,k, w⋆⟩ =
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O(d−1/2), each term in this sum is of order Od(d
−m/2), meaning that for large d → ∞ the

sum is dominated by the lowest order term in the sum. Assuming that µm ̸= 0 for all m ∈ Z+,
this is given by ℓ⋆ = min{m ∈ Z+ : E[g(z)hm(z) ̸= 0]}. This quantity, known as the
information exponent, was first introduced in the study of SGD on single-index models in
[AGJ21]. Finally, in order to ensure weak recovery according to definition 1.3.3, we must
ensure (a) the gradient term in w1,k = w0,k − ηgk is strong enough; (b) concentration of
⟨gk, w⋆⟩. The former is obtained by taking a large learning rate η = Θd(pd

ℓ⋆−1
2 ) and the

latter a batch size n = Ω(dℓ⋆), such that the variance is vanishing in the limit.
This argument can be generalised to a general target function f⋆. As in Section 2.4,

consider the decomposition of the target in the orthonormal basis of Hermite tensors:

f⋆(x) =
∞∑

m=0

⟨cm(f⋆), Hm(x)⟩ (3.8)

where cm(f⋆) ∈ Symm(Rd) is a symmetric rank-m tensor in Rd.29 For the multi-index target
f⋆(x) = g(W⋆x), it can be shown that cm(f⋆) = d−m/2cm(f) · (W⋆, · · · ,W⋆), where · denote
the multilinear multiplication operator — we refer the unfamiliar reader to [Gre12]. This
implies that, cm(f⋆) is at most a rank−r tensor, i.e. its singular vectors (in the sense of (in
the sense of [DDV00]) span a subspace of span(W⋆). Since cm(f⋆) = O(d−m/2), as in the
rank-one case the gradient at initialisation is dominated by the lowest order frequency the
the Hermite tensor basis.

Theorem 3.2.1 ([Dan+24a], informal). Let ℓ⋆ = min{m ∈ Z+ : E[g(z)Hm(z)] ̸= 0}
denote the leap exponent of the target link function, where Hm are the Hermite tensors and
z ∼ N (0, Ir), and define Vℓ⋆ ⊂ span(W⋆) to be the space spanned by the singular vectors of
cℓ⋆(f⋆). Then, after a single step of gradient descent:

• If n0 = Θ(dℓ⋆−δ) for δ > 0, only a vanishing fraction of weights W1 correlated with the
target indices W⋆. In other words: if the batch size is not large enough, no subspace is
weakly recovered after the gradient step.

• Otherwise, if n0 = Ω(dℓ⋆) and η = O(pd
ℓ⋆−1

2 ), with high probability as d → ∞ the
weights W1 weakly learns the subspace Vℓ⋆ .

We refer the reader to [Dan+24a] for a formal statement.

Remark 3.2.1 (Relation with literature). Theorem 3.2.1 extends two previous results in the
literature. The rank-one property of the gradient for n = Θ(d) proven in [Ba+22] implies
weak recovery in this regime, while [DLS22] showed the positive part the theorem for
n = Θ(d2), under the assumption that V2 = span(W⋆) (their Assumption 2). Theorem 3.2.1

29Note the equivalence with the decomposition in eq. (2.62) is given by grouping cm = {cα}α∈Zd
+:|α|=m.
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Figure 3.1: Illustration of theorem 3.2.1 of the weak recovery after a single gradient step.
The y-axis shows the leap exponent of the target function and the x-axis the batch size n0.
In this figure, we assume the learning rate is chosen at the critical scaling η = O(pd

ℓ⋆−1
2 ).

Figure from [Dan+24a].

complements these works by providing the matching lower bounds, demonstrating their
tightness and establishing a general picture for all higher powers of d. In particular, it proves
a clear separation between the class of functions that can be learned in the Θ(d) batch-size
regime of [Ba+22] and those accessible in the Θ(d2) regime of [DLS22], and it further
establishes a hierarchy of functions requiring progressively larger batch sizes to be learned
with a single gradient step.

Although cumbersome to state due to the technicalities of the tensor notation, Theo-
rem 3.2.1 is quite intuitive: it provides a tight characterisation of the batch and learning
rate sizes required to weakly recover the “easiest” (lowest frequency) directions of the target,
as weighted by the link function. A visual summary of this result is given in fig. 3.1. An
immediate corollary for the discussion that will follow in section 3.4.3 is the following:

Corollary 3.2.1 (Proportional regime). In the proportional high-dimensional regime where
d → ∞ with n, p = Θ(d), W1 correlates with at most a one-dimensional subspace of
span(W⋆). More precisely, if ℓ⋆ > 1 or n0 = od(d), no subspace is (weakly) learned. Other-
wise, if ℓ⋆ ∈ {0, 1}, n0, η = Ω(d), a one dimensional subspace is (weakly) learned.

3.2.2 Few gradient steps

Consider now taking a few steps of stochastic gradient descent, T = Θd(1), according to
eq. (3.3). From a technical perspective, this amounts to determining which subspaces become
accessible given what has already been learned, thereby establishing a hierarchy of index
subspaces of increasing difficulty.
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On a high-level, this can be done by iteratively applying theorem 3.2.1 conditionally
on the subspace which has been learned in the previous steps. However, this is technically
intricate for two reasons. First, if ℓ⋆ ∈ {0, 1}, then after a single step we have f(x;W1, a0) ̸= 0,
which breaks the balancedness condition in assumption 3.1.1 and complicates the analysis.
Second, the hierarchy must be defined in a basis-independent manner. To illustrate this point,
consider the polynomial two-index function g(z) = z1 + z2 + z21 − z22 with zk = ⟨w⋆,k, x⟩.
This is a function with ℓ⋆ = 1, and according to theorem 3.2.1, with n0 = O(d) one can
learn the one-dimensional subspace spanned by w⋆,1 + w⋆,2.

Suppose we follow this intuition, and in a second step we condition on the directions
already learned and apply theorem 3.2.1 again. The remaining part, z21 − z22 , is a quadratic
polynomial, and a naive application of theorem 3.2.1 would suggest that it cannot be learned
at linear sample complexity n = Θ(d). However, this reasoning is misleading: note that
z21 − z22 = (z1 + z2)(z1 − z2), and hence, conditionally on (z1 + z2) = a ∈ R, the expression
reduces to a(z1 − z2), which is simply a linear function in disguise and can indeed be learned
with n0 = Θ(d).

In summary, the quadratic polynomial g(z) = z1 + z2 + z21 − z22 can be learned with n0 =

Θ(d) in two steps: the first step identifies the one-dimensional subspace V1 = span(w⋆,1+w⋆,2),
and the second step identifies V2 = span(w⋆,1 − w⋆,2).

This example belongs to a broader class of non-linear functions known as staircase functions,
introduced in [Abb+21; AAM22]. Staircase functions admit a decomposition into a sequence
of subspaces of increasing complexity, with the key property that, conditional on the first T
subspaces, the T + 1 subspace is linearly coupled to them.

To formalise this idea, we first need to make precise what we mean by conditioning a
functions on a subspace.

Definition 3.2.1 (Subspace conditioning). Let V be a vector space, and U ⊆ V a subspace.
For any function f : V → R, and x ∈ U , we define the conditional function fU,x : U⊥ → R as

fU,x(x
⊥) = f(x+ x⊥) (3.9)

To get some intuition for this definition in our context of the GMIM where g ∈ L2(γr),
consider the case in which U = span(v) ⊂ Rp is a one-dimensional subspace. Then, any
z ∼ N (0, Ir) can be decomposed as z = z⊥ + v with ⟨z⊥, v⟩ = 0. Thanks to Gaussian
conditioning, z⊥ is itself Gaussian, and therefore:

g(z) = g(z⊥ + v) =
∞∑

m=0

∑
α∈Zd

+

Cα(v)Hα(z
⊥) (3.10)

with Cα(v) = E[g(z⊥ + v)Hα(z
⊥)]. In other words, Hα(z

⊥) has no components along v. A
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Figure 3.2: Illustration of theorem 3.2.2, showing the index space span(W⋆) for different
multi-index targets g(z) and the directions Wt learned after t one-pass SGD steps. In the
early stages of training, the network first identifies a single direction associated with the
linear component of the target, and subsequently uncovers additional directions that become
linear once conditioned on those already discovered. Let ekk∈[r] denote the standard basis
of Rr. The four panels illustrate distinct scenarios: (Top left) no direction is learned; (Top
right) only a single direction e1 is recovered (single-index regime); (Bottom left) directions
are learned sequentially, with e1 followed by e2 and then e3; (Bottom right) e1 is learned in
the first step, and both e2 and e3 are learned in the second step. Figure from [Dan+24a].

very explicit example is v = e1 where we can explicit write:

Hα(z
⊥) =

d∏
j=2

hαj
(zj) (3.11)

This allow us to show the following result.

Theorem 3.2.2 ([Dan+24a], informal). Consider a r-index GMIM target f⋆(x) = g(W⋆x).
Let T ∈ Z+ and assume that n0, · · · , nT−1 = Θ(d), and η > 0, p ∈ Z+ are fixed. Define a
sequence of nested subspaces U⋆

0 ⊆ U⋆
1 ⊆ U⋆

T−1 ⊆ span(W⋆) as

• U⋆
0 = {0},

• for any t ∈ [T ],U⋆
t+1 = U⋆

t ⊕
(
{cU⋆

t ,z
(g) : z ∈ U⋆

t }
)
, where cU,z(g) = Ez⊥∼N (0,Ir) [∇z⊥gU,z]

is the first Hermite tensor coefficient of gU,z.

Then, after t ∈ [T ] gradient steps of one-pass SGD in eq. (3.3) with a balanced initialisation
assumption 3.1.1, Wt weakly recover the index subspace U⋆

t almost surely over a0.

Informally, theorem 3.2.2 states that with linear sample complexity one-pass SGD weakly
learns staircase components of f⋆. In particular, if the link function is a staircase function,
it weakly recovers the full span(W⋆) in T ∈ [r] steps with linear sample complexity. A few
examples are discussed in fig. 3.2.
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3.2.3 Batch reusing and CSQ vs. SQ classes

As discussed in section 1.3.1, many efficient algorithms for learning multi-index functions
exist in the literature. In particular, as we will see in chapter 4, weak recovery can be
achieved computationally with n = Θ(d) samples for most multi-index functions, including
monomials of the form g(z) = z1 · · · zr, which have leap exponent ℓ⋆ = r [CM20]. It
follows that the one-pass SGD sample complexities derived in theorems 3.2.1 and 3.2.2 are
suboptimal.

This limitation is closely tied to the fact that in one-pass SGD the gradient updates in
eq. (3.3) are independent. Each step has the form E[yσ′(⟨wt,k, x⟩)x], wherewt,k is independent
of (x, y) (c.f. eq. (3.6)), and hence carries vanishing information about the indices as d→ ∞
when ℓ⋆ ≥ 1. This corresponds to a particular instance of the so-called correlational statistical
query (CSQ) model, where the signal is accessed only through expectations of the form
E[yϕ(x)] for some transformation ϕ : Rd → R. In [Dam+23], it was shown that CSQ
algorithms require at least n = Ω(dℓ⋆/2) samples to weakly learn a single-index model (r = 1).
Moreover, they demonstrated that this lower bound can be attained by one-pass SGD if the
loss function is modified via a smoothing procedure inspired by statistical physics landscape
analysis [BCR20]. In any case, since the training procedure in definition 3.1.1 effectively
implements a CSQ algorithm, it follows that one-pass SGD is fundamentally constrained in
this setting.

The situation changes when the batches of data are reused across the iterations. As shown
in [Dan+24c], full-batch gradient descent can weakly recover high-frequency subspaces,
such as g(z) = h3(z), with the information-theoretic sample complexity n = Θ(d) in only
two steps. This improvement arises from the memory effect induced by data reuse, which
introduces bias into the gradients. Importantly, this effect is not unique to full-batch gradient
descent. As demonstrated in [Arn+24b; Lee+24], it already appears in the simplest setting
of reusing a single data pair (x, y) twice. To see this, consider the single-index target
y = hℓ⋆(⟨w⋆, x⟩) with leap ℓ⋆ > 1. As shown in eq. (3.7), for one-pass SGD the correlation
E[⟨w⋆, gk⟩] = Θ(d−(ℓ⋆−1)/2), and thanks to the independence of batches this remains true at
every step. By contrast, when two steps of SGD are performed on the same data point, the
first step yields the same correlation as in one-pass SGD, but the second step leads to

E[⟨g2,k, w⋆⟩] ∝ −E[g(⟨w⋆, x⟩)σ′(⟨w0,k − ηg0,k, x⟩)⟨w⋆, x⟩]

∝ −E[g(z⋆)σ′(zk − ηg(z⋆)σ
′(zk)z⋆]. (3.12)

for (z⋆, zk) jointly Gaussian variables with unit variance and correlation 1/d⟨w⋆, w0,k⟩ =

O(d−1/2). Expanding in the limit d→ ∞, one finds that the resulting expectation is of order
Θd(1) — see [Arn+24b] for the derivation.

The key difference between eq. (3.12) and eq. (3.7) is that the former takes the form
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E[ψ(x, y)], where ψ : Rd+1 → R is a joint transformation of both covariates and labels. This
corresponds to a statistical query (SQ) in the sense of [Kea98], and defines a richer class of
algorithms than correlational statistical queries (CSQ). For Gaussian single-index models, a
SQ lower bound of n = Ω(dk⋆/2) was established in [Dam+24], where the sample complexity
is governed by the so-called generative exponent k⋆ ∈ Z+, which is strictly smaller than the
information-theoretic exponent. We will return to this point in chapter 4, where it will be
discussed in the context of optimal algorithms for the GMIM.

3.3 From weak recovery to generalisation

So far, our discussion has focused only on weak recovery, i.e. the first step in the step-wise
training in definition 3.1.1. In this section, we discuss the implications to generalisation once
the second layer is trained.

Intuitively, once a subspace U ⊂ span(W⋆) of the indices has been weakly learned during
training, the contribution of the target lying in this subspace should no longer contribute to
the risk. In the most favourable case, all the energy of the target function supported on U
is effectively removed from the error, leaving only the orthogonal component to be fitted.
This intuition can be formalised in the following conjecture, which provides a lower bound
on the risk.

Conjecture 3.3.1 ([Dan+24a], informal). Assume that min(n, p) = Θ(dκ) and that the
learned first layer weights Ŵ span a subspace U ⊆ span(W⋆). Then, the risk of ridge
regression on the second-layer weights is lower-bounded as

E
[(
f⋆(x)− f(x; âλ, Ŵ )

)2]
≥ ||PU,>κf⋆||2L2(γd)

− o(1), (3.13)

where PU,>κ is the projector of the target f⋆ into the polynomials of degree > κ which are
orthogonal to the learned subspace

PU,>κf⋆(x) =
∑
m>κ

∑
α∈Zd

+

|α|=m

Cα(PUx)Hα(x
⊥) (3.14)

Proving conjecture 3.3.1 in full generality is a challenging open problem, and numerical
evidence can be found in [Dan+24a]. Nevertheless, we can show it holds in the particular
case of the proportional asymptotics.

Theorem 3.3.1 ([Dan+24a]). Conjecture 3.3.1 holds in the proportional regime d → ∞
with n, p = Θ(d).

Together with theorem 3.2.1, this results show that if f⋆ has leap ℓ⋆ ∈ {0, 1}, in the
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proportional regime the network can learn at least a single-index approximation of the target
function f⋆(x) ≈ g(⟨θ⋆, x⟩) + noise.

3.4 Sharp asymptotics

Theorem 3.3.1 establishes a lower bound on what can be learned in the proportional regime.
We now examine this result more closely, aiming at an exact characterisation of feature
learning after a single gradient step.

For the sake of clarity, let’s repeat the setting we will be focusing in this section. Let
D = {(xi, yi) ∈ Rd+1 : i ∈ [N ]} denote the training data, which we assume has been drawn
from a Gaussian single-index model:

yi = g(⟨w⋆, xi⟩), w⋆ ∈ Sd−1(
√
d), xi ∼ N (0, 1/dId) (3.15)

Since we will be interested in the proportional regime, thanks to theorem 3.3.1 this is without
loss of generality. Let N = n0 + n denote a split of the data in two disjoin batches, and
consider one step of SGD:

w1,k = w0,k − η∇w
1

n0

n0∑
i=1

(g(⟨w⋆, xi⟩)− f(xi;W0, a0))
2 . (3.16)

from initial condition wk,0 ∼ Uni(Sd−1(
√
d)) and ak,0. We will be interested in the following

ERM problem

âλ = argmin
a∈Rp

n∑
i=1

(g(⟨w⋆, xi⟩)− f(xi;W1, a))
2 + λ||a||22 (3.17)

for a two-layer neural network f(x;W, a) = 1/√p⟨a, σ(Wx)⟩ in the feature rich proportional
asymptotics where d→ ∞ with:

n

d
→ α,

n0

d
→ α0,

p

d
→ γ,

η

d
→ η̃,

√
p a0,k → ã0,k (3.18)

where the right-hand side quantities are Θd(1).

Remark 3.4.1 (Unbalanced initialisation). Note that the above is slightly more general than
the assumptions we made in section 3.1. In particular, we do not require initialisation to be
balanced.

As in the random features case discussed in Chapter 2, deriving sharp asymptotics requires
analysing the limiting behaviour of the feature matrix Φik = σ(⟨w1,k, xi⟩). At initialisation,
this was achieved via Gaussian equivalence; here, an analogous result is needed.
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3.4.1 Equivalent spiked random features model

The starting point is to have a sharper control of the gradient update. By separating the
activation in the linear and non-linear parts on the Hermite basis σ(z) = µ1z + σ>1(z) in
eq. (3.16), one can show that the update can be re-writen as:

W1 = W0 + uv⊤ +∆ (3.19)

where:

u =
µ1ηa0√

p
, v =

X⊤y

n0

(3.20)

and ∆ account for the remaining, high-frequency terms. Note that u ∈ Rp is proportional
to the second-layer weights at initialisation, while v ∈ Rd is the signal part of the gradient.
Indeed, v can be seen as implementing an average over the gradient of f⋆:

v =
1

n0

n0∑
i=1

xig(⟨w⋆, xi⟩)
n0→∞−−−−→ E[g′(⟨w⋆, x⟩)w⋆] = c1w⋆ (3.21)

where c1 = E[g′(z)]. Indeed, this approximation is good as soon as n0 = Θ(d1+δ), i.e.
α0 → ∞. It is easy to see that the rows of the high-frequency part of the gradient ∆k ∈ Rd

are independent, and one can show they satisfy the following properties.

Lemma 3.4.1 ([Dan+24a], informal). With high-probability on as d→ ∞ with n0, p, η =

Θ(d):

• Vanishing correlation with the signal:

⟨∆k, w⋆⟩ = O

(
polylog(d)

p
√
d

)
(3.22)

• Operator norm:

||∆||op = O

(
polylog(d)√

d

)
(3.23)

• Orthogonality:

⟨∆k,∆l⟩ = O

(
polylog(d)

p2
√
d

)
, k ̸= l (3.24)

Intuitively, we would like to treat W1 as a spiked matrix model, where W0 +∆ plays the
role of the bulk and uv⊤ is a rank-one spike. However, this is not straightforward: while
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both ∆ and W0 have independent and almost orthogonal rows, differently from W0, the
rows of ∆ are anisotropic, making the analysis challenging. It can be shown, however,
that the anisotropic components of ∆ are of O(α0), meaning that in the limit α0 → ∞ we
can approximate W1 by a isotropic spiked model. Together with eq. (3.21), this yields the
following result.

Lemma 3.4.2 ([Dan+25]). For any δ > 0, in the limit d → ∞ with n, p, η = Θ(d) and
n0 = Θ(d1+δ) the first gradient step can be approximated by a isotropic spiked matrix model:

||W1 −
(
F + c⋆uw

⊤
⋆

)
||F → 0, a.s. d → ∞. (3.25)

where w⋆ ∈ Sd−1(
√
d), u = γ−1µ1η̃ã0 and F ∈ Rp× is a matrix i.i.d. rows satisfying

⟨fk, fl⟩ = dδkl
(
1 + Θ(d−1/2)

)
.

This result effectively means that studying the two-step training procedure in the pro-
portional asymptotics is equivalent to studying the ERM problem in eq. (3.17) with the
following spiked random features model (sRF) [Cui+24]:

min
a∈Rp

n∑
i=1

(g(⟨w⋆, xi⟩)− ⟨a, σ (Fxi + u⟨v, xi⟩)⟩)2 + λ||a||22 (3.26)

with limd→∞ 1/d⟨v, w⋆⟩ = c1.

3.4.2 Conditional Gaussian equivalence

The final step in characterising the risk is to approximate the spiked feature matrix Φ =

σ(XF⊤ +Xvu⊤) in the high-dimensional limit. As in the random features model, this relies
on an equivalence result showing that only the low-frequency components of the features
contribute meaningfully to the error, while the high-frequency components act as effective
noise. Unlike the random features case, however, this approximation retains information
about the component of the target function already captured during training. In other
words, the learned features are crucially correlated with the index w⋆.

Theorem 3.4.1 ([Dan+24a], informal). Consider the spiked random features model with
features:

Φik = σ (⟨fk, xi⟩+ uk⟨v, xi⟩) (3.27)

Define the linearised feature map:

Gik = µ0 (uk⟨v, x⟩) + µ1 (uk⟨v, x⟩) ⟨fk, xi⟩+ µ⋆ (uk⟨v, x⟩)Zik, (3.28)
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where Zik ∼ N (0, 1), κ = ⟨v, x⟩ and:

µ0(κ) = E [σ(z + κ)] ,

µ1(κ) = E [zσ(z + κ)] ,

µ⋆(κ) =
√

E [σ2(z + κ)]− µ1(κ)2 − µ0(κ)2, (3.29)

where z ∼ N (0, 1). Then, in the proportional high-dimensional limit the test error of the
minimiser in eq. (3.26) is asymptotic to the test error of the conditional equivalent problem
with linearised features eq. (3.28).

Remark 3.4.2 (cGET beyond sRF). The intuition behind the derivation of theorem 3.4.1 is
that the non-Gaussian components of the features span only a low-dimensional subspace,
while the remaining directions behave as isotropic Gaussian. This idea was first introduced
in [Dan+23], where it was used to establish conditional universality in mixture models.30 We
conjecture that this principle extends beyond these two settings, to any problem in which the
non-Gaussian components of the features influence the risk only through a limited number
of directions.

3.4.3 High-dimensional asymptotics

Combining the characterisation of the gradient and the conditional Gaussian equivalence
for the features allow us to derive a sharp characterisation of the risk in the proportional
high-dimensional regime, akin to the results discussed of chapter 2.

Theorem 3.4.2 ([Cui+24; Dan+25], informal). Assume that ã0,k is drawn i.i.d. from a finite
vocabulary of size k = Θd(1) with probabilities (πq)q∈[k]. Then, in the limit d → ∞ with
n, p, η = Θd(d) and n0 = Θd(d

1+δ) with δ > 0, the excess risk of the minimiser in eq. (3.17)
admits a deterministic equivalent:

|R(âλ)− R(α, γ, λ, η̃, π)| −→ 0, a.s. d→ ∞ (3.30)

The explicit formulas for R are rather cumbersome and are omitted here for brevity; we
refer the interested reader to the original works [Cui+24; Dan+25].

Remark 3.4.3 (One step vs. sRF). A deterministic equivalent for the risk, analogous to
theorem 3.4.2, can be derived for the spiked random features model in the regime n0 = Θd(d)

(i.e. α0 = Θd(1)) under isotropic F . However, as discussed in section 3.4.1, this provides
only an approximation to the full bulk, which in this regime contains anisotropic corrections.

30A Gaussian mixture model can also be expressed as a spiked matrix model X = yµ⊤ + Z, but with the
spike appearing in the covariates rather than in the weights.
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Figure 3.3: (Left) Generalisation error of learning of the isotropic sRF model as a function
of α = n/p for different values of batch size α0 = n0/d, g = sin, σ = tanh, η̃ = 1, λ = 0.1 and
uniform initialisation ã = 1p. Solid lines denote theoretical results from a generalisation of
theorem 3.4.2 to α0 = Θd(1), and crosses denote finite size simulations with d = 2000. The
dashed black line represents the lowest achievable MSE for kernel/linear methods. (Right)
Upper (orange) and lower (blue) bounds for the approximation of a sine function g = sin
with σ = tanh as predicted from corollary 3.4.1. Figures from [Cui+24].

Obtaining a sharp characterisation of the risk for the anisotropic spiked random features
model remains an open problem.

Theorem 3.4.2 provides a sharp characterisation of feature learning after a single gradient
step, yielding not only the asymptotic risk but also an effective description of how the
network adapts its features to the low-dimensional structure of the target, as a function of
(α, γ, η̃, ã). In Figure 3.3 (left), we compare the best achievable risk of kernel methods at
n = Θ(d), as characterised in section 2.4, with the risk attained after one step of training for
different batch sizes α = n0/d. While the performance at initialisation is always lower bounded
by that of the best linear method (theorem 2.4.1), a single gradient step with moderate sample
complexity surpasses this high-dimensional bottleneck thanks to the adaptivity of the features
to the target.

The explicit formulas in theorem 3.4.2 can be considerably simplified in the case where the
readout layer weights are initialised homogeneously a0 = 1/√p1p. From the exact formulas,
one can derive interpretable lower and upper bounds from the risk.

Corollary 3.4.1 ([Cui+24], informal). Under the same setting of section 3.4.3 with the
additional assumption that ã0 = 1p, the excess risk of ridge regression satisfies the following
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Figure 3.4: (Left) Asymptotic spectral density of the features empirical covariance matrix
before (dashed blue) and after (solid red) training with one-step of SGD. The lines denote
the theoretical predictions, while the green histogram denotes finite size simulations. (Right)
Risk as a function of α = n/p for different vocabulary sizes k ∈ [4] and λ = 0.01, η̃ = 0.5,
γ = 1.5. Solid curves denote the theoretical predictions from theorem 3.4.2, and dots denote
simulations with p = 2048. Figure from [Dan+25].

upper and lower bounds under optimal choice of regularisation λ ≥ 0:

inf
λ≥0

R(α, γ, λ, η̃) ≤ inf
ν1

Eκ

[
(g(κ)− ν1µ0(κ))

2] , (3.31)

inf
λ≥0

R(α, γ, λ, η̃) ≥ inf
ν1,ν2

Eκ

[
(g(κ)− ν1µ0(κ)− ν2µ1(κ)κ)

2] . (3.32)

where κ ∼ N (0, 1).

The upper bound (3.31) corresponds to Lemma 6 of [Ba+22] in the case of uniform
readout initialisation a0 = 1p/√p, and is attained in the limit λ→ ∞. The lower bound (3.32),
by contrast, shows that the risk cannot fall below the L2(γ1) distance between the target link
function g and the span of {µ0, µ̃1}, where µ̃1(κ) = κµ1(κ), with the best approximation
given by the orthogonal projection of g onto this span. Figure 3.3 (right) illustrates the
functions that realise the upper and lower bounds, and how these compare to the target
g. Finally, in the random features limit the functions µ0(κ) and µ1(κ) collapse to constants
independent of κ, restricting the class of learnable functions to linear ones — consistent with
the discussion in Section 2.4. This result therefore give us a low-dimensional summary of
how the high-dimensional features adapt after one step of SGD.

One of the steps in the characterisation of the asymptotic risk in theorem 3.4.2 involves
controlling the empirical covariance of the feature matrix, Σ̂n = 1/nΦ⊤Φ. A corollary of this
result is a deterministic equivalent for Σ̂n, from which the asymptotic spectral density can
be derived; see [Dan+25] for explicit formulas. Figure 3.4 (left) compares the bulk of the
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asymptotic spectral density of the empirical feature matrix before and after training. Relative
to the initialisation spectrum31, training produces a modified bulk with broader support
and heavier tails. This theoretical prediction resonates with a range of empirical findings
[MM21; MPM21; Wan+24], which have reported the emergence of heavier-tailed spectra
following feature learning, often correlating with improved generalisation. Notably, this
phenomenon persists even when networks are trained with multiple large stochastic gradient
steps or adaptive optimisers such as Adam [Kin14], as observed empirically in [Wan+24].

Remark 3.4.4 (Readout initialisation). A consequence of the theory in [Cui+24; Dan+25]
is that the effective number of parameters in the high-dimensional limit is proportional to
the number of elements of the alphabet in which a0,j is initialised. This implies that adding
diversity in the initial weights a0,j increases the expressivity of the network. Indeed, from
the conditional Gaussian equivalent characterisation in theorem 3.4.1, for a vocabulary V ,
the functional basis {µ0(ω·), µ̃1(ω·)}ω∈V , thereby allowing the network to span a larger class
of functions. This implies that the functional space spanned by these functions is generically
of dimension 2|V | for non-uniform readout initializations a0, compared to just 2 in the
uniform readout case. Figure 3.4 (right) illustrates how a larger vocabulary size for a given
task leads to an improvement in the risk.

31Given by a shifted Marchenko–Pastur distribution due to Gaussian universality, see eq. (2.67)



4 | Fundamental limitations

In this chapter, we examine the fundamental computational limits of learning Gaussian multi-
index models with limited data in the high-dimensional regime. Our focus is on classifying
which multi-index functions are computationally tractable and which are intrinsically hard
to learn, depending on how the link function couples the different indices. This analysis
serves as a benchmark for the results developed in chapters 2 and 3 on two-layer neural
networks, providing a reference point against which the benefits and limitations of feature
learning can be assessed.

The results discussed in sections 4.2 and 4.3 are based on [Tro+25], while the results
discussed in section 4.4 are based on [Def+25]. The discussion is partially inspired from a
lecture taught on these results at the Statistical Physics & Machine Learning: moving forward
summer school in August 2025 [Lou25].

4.1 Approximate message passing

Let D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} denote a batch of training data drawn from the Gaussian
multi-index model introduced in definition 1.3.2, which we recall here for convenience:

yi ∼ Py(·|W⋆xi), xi ∼ N (0, 1/dId) i.i.d. (4.1)

where Py is the likelihood parametrising the link function and W⋆ ∈ Rr×d are the indices,
which in this chapter we will assume are Gaussian i.i.d. matrices.

Consider the most favourable scenario where the link function (or likelihood) Py and
the distribution of the indices PW are known to the statistician, who seeks to estimate the
specific realisation of the indices W⋆ ∼ pW that generated the training data D, also known as
the Bayes-optimal scenario. Under the square loss, the estimator achieving the best possible
risk is given by the posterior mean:

mmse = min
Ŵ∈Rr×d

E
[
||W⋆ − Ŵ (D)||2F

]
= E

[
||W⋆ − E[W |D]||2F

]
(4.2)

85
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where the posterior distribution is explicitly written as

p(W |D) =
p(W )

Zd(D)

n∏
i=1

Py(yi|Wxi). (4.3)

Hence, the marginals of this posterior distribution characterise the information-theoretic
limits of recovery. Analysing them when d is large, however, is notoriously challenging:
sampling from p(W |D) is, in the worst case, computationally intractable, requiring time
exponential in the dimension.

Our main tool in the following will be the approximate message passing algorithm. This is
an iterative algorithm that seeks to approximate the marginals of the posterior eq. (4.3) from
an initial guess Ŵ0:

Ωt = Xfin(Bt, At)− gout(y,Ωt−1, Vt)V
⊤
t (4.4)

Bt+1 = X⊤gout(y,Ωt, Vt)− fin(Bt, At)A
⊤
t (4.5)

where Ωt ∈ Rn×r and Bt ∈ Rd×r are matrices with rows ωi, bj ∈ Rr, respectively, and
fin(,̇A) : Rr → Rr and gout(y, ,̇V ) : R × Rr → R are two vector-valued functions acting
row-wise on the matrices Bt,Ωt:

gout(y, ω, V ) = Ez∼N (0,Ir)

[
V −1(z − ω)Py(y|z)

]
, fin(b, A) = (Ir − A)−1 b (4.6)

and At, Vt are given by:

At =
1

d

n∑
i=1

∇ωi
gout(yi, ωi, Vi), Vt =

1

d

d∑
j=1

∇bjfin(bj, Aj) (4.7)

Finally, the estimate of W⋆ after T steps is obtained by Ŵamp = fin(BT , AT )
⊤.

Intuitively, the AMP iterates in eq. (4.4) can be viewed as a two-step procedure: first
estimating the pre-activations z ∈ Rr from the observations y = g(z), and then recovering
the indices W ∈ Rr×d from the relation z = Wx. The functions fin and gout defined in
eq. (4.6) are precisely the Bayes-optimal denoisers for these two subproblems. Moreover,
AMP is a first-order method: it requires only the evaluation of r-dimensional functions
and matrix–vector multiplications by X ∈ Rn×d and its transpose. For r = O(1), the
computational cost is therefore dominated by these multiplications, scaling linearly with the
size of the data matrix, i.e. Θ(nd).

What distinguishes AMP from other first-order algorithms is that it is provably optimal
in the proportional high-dimensional regime d→ ∞ with n = Θ(d). This has been proven
in [CMW20; MW24], showing that AMP achieves the best possible performance among
all first-order methods in this limit. As such, AMP provides a fundamental computational
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benchmark for this class of algorithms.
The key fact that makes AMP a powerful theoretical tool is that its asymptotic performance

can be tracked by a set of state evolution equations, which was first derived and proven for
the Gaussian-multi index model in [Aub+18].

Lemma 4.1.1 (State evolution [Aub+18; GB23]). Let D = {(xi, yi) ∈ Rd+1 : i ∈ [n]}
denote i.i.d. samples from the Gaussian multi-index model lemma 4.1.1. Run AMP from
random initialisation Ŵ0 ∈ Rr×d with ŵ0,k ∼ N (0, Id) i.i.d. Denote by Ŵt the resulting
estimator at time t ∈ [T ]. Then, in the high-dimensional limit n, d → ∞ with fixed ratio
n/d → α = Θd(1), constant r, T = Θd(1), the limiting overlaps satisfy:

1

d
ŴtŴ

⊤
t

P−→Mt,
1

d
ŴtW

⊤
⋆

P−→Mt, (4.8)

with Mt satisfying the state evolution equations from initial condition M0 iterated with:

Mt+1 = F (Mt) (4.9)

where:
F (Mt) = G

(
αEIrg[gout

(
Yt,
√
Mtξ, Ir −Mt

)⊗2

Irg]

)
. (4.10)

where G(M) = (Ir + M)−1M ∈ Rr×r and the expectation is taken over the following
effective process

Yt ∼ Py

(
·|
√
Ir −MtZ +

√
Mtξ

)
, (4.11)

with Z, ξ ∼ N (0, Ir) independently. The asymptotic mean-squared error on the label
prediction is then given by:

E
[(
y − g

(
Ŵt(X, y)x

))2] P−→ E[(Yt − g(Z))2],

where the expectation is taken over the effective estimation process eq.(4.11) and P−→ denotes
convergence in probability w.r.t the training data as n, d→ ∞.

Remark 4.1.1. It can be shown that F preserves the symmetry and positive semi-definite
properties. Therefore, if M0 ⪰ 0 is a symmetric p.s.d. matrix, so is Mt+1 = F (Mt) for every
t ∈ [T ].

The state evolution equations reduce the task of analysing the fundamental computational
bottlenecks of learning GMIM in the high-dimensional limit to studying a deterministic
dynamical system on the cone of positive semi-definite matrices M ∈ Rr×r. Next, we
can leverage lemma 4.1.1 to classify which problems are easy or hard for AMP in the
high-dimensional limit.
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4.2 Trivial, easy and hard subspaces

Since in the Bayes-optimal scenario the prior distribution is known to the statistician, a
natural choice of initial condition is W0 ∼ PW . Consequently, at initialisation the overlap
matrix is element-wise small:

⟨ŵk,0, w⋆,k′⟩
d

= ÕP(d
−1/2) (4.12)

In the high-dimensional d → ∞ limit, this implies that state evolution from a so-called
uninformed initialisation reduces to the zero matrix, M0 = 0 ∈ Rr×r. It is therefore necessary
to examine the trajectory of state evolution eq. (4.9) starting from 0. In particular, the first
question is whether the zero matrix constitutes a fixed point.

Lemma 4.2.1 (Existence of uninformed fixed point). M = 0 ∈ Rr×r is a fixed point of the
state evolution eq. (4.9) if and only if the following condition holds almost surely over the
effective process Y = g(Z) for Z ∼ N (0, Ir):

gout(Y, 0, Ir) = E[Z|Y ] =

∫
Rr

dz
(2π)d/2

e−
1
2
||z||22Py(Y |z) = 0 (4.13)

This is an intrinsic property of the likelihood Py(Y |·), and it is satisfied for instance if Py

is an odd function of z.

4.2.1 Trivial subspace

If M = 0 is not a fixed point of eq. (4.9), then M1 = F (M0) ≻ 0. In other words, a single
iteration of AMP from the initialisation suffices — regardless of how small the sample complexity
α > 0 may be — to weakly recover a subspace T⋆ of dimension rank(M1) > 0, in the sense
of eq. (1.12). We refer to this subspace T⋆ ⊂ span(W⋆) as a trivial subspace. More formally,
this can be define as follows.

Definition 4.2.1 (Trivial subspace). Let H⋆ ⊂ span(W⋆) denote the subspace spanned by
the vectors v ∈ Rr satisfying:

⟨gout(Y, 0, Ir), v⟩ = lim
d→∞

E[⟨W⊤
⋆ v, x⟩|Y = y] = 0 (4.14)

where equality holds almost surely over Y = g(Z) with Z ∼ N (0, Ir). The trivial subspace
T⋆ is define as the orthogonal complement of H⋆, i.e. span(W⋆) = T⋆ ⊕H⋆

As previously said, trivial subspaces can be learned at any sample complexity by a single
step of AMP.
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Theorem 4.2.1. For any α > 0, with high-probability as d→ ∞, the AMP algorithm in
eq. (4.4) weakly recovers T⋆ as per eq. (1.12) in a single iteration.

Example 4.2.1. To get some intuition, we can have a look at a few examples of trivial
subspaces.

• For single-index models (r = 1), T∗ is one dimensional if and only if g is non-even, e.g.
g(z) = He3(z). This follows from requiring that gout(y, 0, 1) ̸= 0 for at least one value
of y. In particular, on any open interval where gout is invertible we have gout = g−1.

• For a linear multi-index model, g(z) =
∑r

k=1 zi, T⋆ is spanned by 1r ∈ Rr (all-one
vector).

• For a committee g(z) =
∑r

k=1 sign(zk), the trivial subspace T⋆ is again 1d, spanned by
1r ∈ Rr.

• For monomials g(z) = z1 . . . zr, the trivial subspace T⋆ is non-empty if and only if
p = 1.

• For leap one staircase functions [AAM23]:

g(z) = z1 + z1z2 + z1z2z3 + . . . (4.15)

The trivial subspace is T⋆ = Rr and is spanned by the canonical basis. In other words,
AMP learns all the directions with a single step for any α > 0.

Theorem 4.2.1 already highlights a stark contrast between one-pass SGD and AMP.
Indeed, certain functions that can be learned with arbitrarily small sample complexity by
a single step of AMP require diverging sample complexity under one-pass SGD. This is
exemplified by the cubic single-index function g(z) = h3(z), which is trivial for AMP but, as
shown in theorem 3.2.1, requires n = Θ(d2) samples for weak recovery under one-pass SGD.
As discussed in section 3.2.3, this inefficiency of one-pass SGD can be understood within the
statistical query framework as a separation between CSQ and SQ queries. A similar analogy
holds for AMP.

Remark 4.2.1 (Optimal label pre-processing). The condition in lemma 4.2.1 admits a natural
interpretation in the framework of statistical queries [Kea98]. Specifically, the denoiser gout
can be viewed as a non-linear transformation of the labels, y 7→ gout(y, 0, Ir). From this
perspective, the condition for the existence of a non-empty trivial subspace translates into
the requirement

E[gout(y, 0, Ir)⊤v⟨W⊤
⋆ v, x⟩] = E

[
E[⟨W⊤

⋆ v, x⟩|Y = y]2
]
̸= 0 (4.16)
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where v ∈ T⋆. The left-hand side can be seen as a statistical query of the type E[ψ(y)ϕ(x)]
with label pre-processing φ = gout. In fact the denoiser gout is the optimal such transformation
in the sense that when gout fails to obtain a linear correlation along v, i.e when v ∈ T⋆, then
no transformation can.

4.2.2 Easy subspace

On the other hand, if M = 0 is a fixed point of eq. (4.9), two qualitatively distinct behaviours
may arise: it may be an unstable fixed point (repeller) or a stable fixed point (attractor) of
the dynamics. These scenarios have markedly different implications. If we initialise Ŵ0

such that ||M0||F ≈ ϵ > 0 with ϵ arbitrarily small, then in the case of a repeller we have
M1 moving away from 0, whereas in the case of an attractor the dynamics drive M1 back
towards 0. In particular, if M = 0 is an attractor, a random initialisation does not suffice for
AMP to develop a meaningful correlation with W⋆ at later times. To determine the stability
of a fixed point, one must examine the Jacobian of F around M = 0:

F (M) ≈ αF(δM) +O(∥δM∥2) (4.17)

where F(δM) is a linear operator on the cone S+
r of p.s.d. matrices of dimension r:

F(M) = E
[
G(Y )MG(Y )⊤

]
. (4.18)

where the expectation is with respect to Y = g(Z) with Z ∼ N (0, Ir), and the operator Ĝ is
given by:

Ĝ(y) = ∇ωgout(y, 0, Ir) = E[ZZ⊤ − Ir|y] ∈ Rr×r (4.19)

The stability of the M = 0 fixed point is then closely related to the operator norm of F
on the psd cone:

Lemma 4.2.2 ([Tro+25]). If M = 0 ∈ Rr×r is a fixed point of the state evolution equations.
Then, it is an unstable fixed point if and only if ∥F(M)∥F > 0 and n > αcd, where the
critical sample complexity αc, known as the weak recovery threshold, is given by:

1

αc

= sup
M∈Rr×r

∥M∥F=1

∥F(M)∥F, (4.20)

Moreover, ifF(M) ̸= 0, there exists at least oneM⋆ ̸= 0 ∈ S+
r achieving the above supremum.

While if F(M) = 0, then M = 0 is a stable fixed point for any n = Θ(d).
This implies that for α > αc, iterating the state evolution equations eq. (4.9) will eventually

move us away from initialisation, provided we have M0 ̸= 0.
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We can further characterise the subspace learned in this case, which we denote the easy
subspace:

Definition 4.2.2 (Easy subspace E⋆). Let H∗ ⊂ span(W⋆) denote a subspace of directions
v ∈ Rr satisfying

⟨v, Ĝ(Y )v⟩ = 0, (4.21)

almost surely over Y = g(Z), Z ∼ N (0, Ir). We define the easy subspaceE⋆ as the orthogonal
complement of H⋆, i.e. span(W⋆) = E⋆ ⊕H⋆

The main difficulty in proving that AMP successfully learns the easy subspace for α > αc

from the state evolution equations with random initialisation lies in the fact that M = 0 is,
by construction, a fixed point of the dynamics. A standard way to circumvent this issue is to
assume an arbitrarily small (yet Θd(1)) initial overlap, and to show that AMP converges to
the easy subspace within a time that does not diverge too rapidly as this initial correlation
tends to zero. Formally, this is equivalent to assuming access to an arbitrarily noisy version
of W⋆, referred to as a side information channel:

S =
√
λW⋆ +

√
1− λZ (4.22)

where Z ∈ Rr×d is a random Gaussian matrix with N (0, 1) entries, and λ > 0 quantifies the
amount of side information.

Theorem 4.2.2 ([Tro+25]). Let Md,t = 1/dŴtW⋆
⊤ denote the model-target overlap matrix

at any finite time t. Suppose that T⋆ = 0 and consider the AMP algorithm eq. (4.4). Then,
with high probability as d→ ∞:

(i) For α ≥ αc, ∃δ > 0 such that for sufficiently small λ ,M t
d ≻ δM⋆ for t = Θ(log 1/λ),

where M⋆ is any of the extremisers defined in eq. (4.20). Furthermore, there exists
an α ≥ αc and a δ > 0 such that M t

d ≻ δME∗ in t = Θ(log 1/λ) iterations, where
ME⋆ ∈ S+

r spans E⋆.

(ii) For α < αc however, Md,t = 0 is asymptotically stable i.e. there exist constants λ′ < 1

and C > 0 such that for λ < λ′, supt≥0 ∥M t
d∥ ≤ C

√
λ.

Remark 4.2.2 (Relationship with the literature). The computational weak learnability
threshold for single-index models were first established in [MM19; LAL19; Bar+19b]. In
this simpler case, the computational and information theoretical thresholds for full-recovery
were also studied in [Bar+19b; Mai+20].

Theorem 4.2.2 formalises our intuition about the stability of the uninformed fixed point.
It implies that for α < αc, not only does AMP fail to find any pertinent directions, but it also
fails to improve on the small side-information. For α > αc, however, AMP will develop a
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growing overlap Mt along a non-empty subspace starting with arbitrarily small (but Θd(1))
side information.

Heuristically, we would like to identify λ = Θ(1/d). Of course, this is not justified, since
in the state evolution equations we have already taken the high-dimensional limit, and
would imply λ = 0 in this limit. To make sense of this in the AMP framework requires a
non-asymptotic control of the state evolution equations. This is mathematically challenging,
and only available for a few simpler problems, see [RV18; LW22; LFW23]. Nevertheless,
numerical evidence suggests a similar result holds here.

Conjecture 4.2.1 ([Tro+25]). AMP initialized randomly will find a finite overlap with the
easy directions for α > αc in O(log d) steps, without side information.

Example 4.2.2. Two examples of easy multi-index functions.

• The monomials g(z) =
∏r

k=1 zk with r > 1 can always be learned with α > αc(r)

[CM20]. For instance, we have αc(2) ≈ 0.5937, αc(3) ≈ 3.725, αc(4) ≈ 4.912 and
αc(r) ∼ r1.2 for large r.

• The 2-sparse parity g(z) = sign(z1z2) is easy, and can be learned with αc = π2/4.

4.2.3 Hard subspace

Finally, there are functions for whichM = 0 is a stable fixed point for all α = Θd(1), meaning
αc → ∞, i.e. the supremum in the right-hand side of eq. (4.20) is zero. This is what we
call a hard function. A canonical example of a hard function is the r-sparse parity for r > 2

[BKW03]:

g(z) =
r∏

k=1

sign(zk) (4.23)

These are functions that are intrinsically hard for AMP, and for which a more refined
analysis — beyond proportional asymptotics — is required. Two alternative notions of
typical-case complexity, extensively studied in the theoretical computer science literature,
are the statistical query (SQ) framework [Kea98], previously discussed in section 3.2.3, and
the low-degree polynomial (LDP) framework [Bar+19a; HS17]. Gaussian single-index
models have been analysed under both frameworks in [Dam+24], which established in each
case a sample complexity lower bound of n = Ω(dk⋆/2), where k⋆ is the so-called generative
exponent:

k⋆ = min{m ∈ Z+ : E[E[hm(Z) | Y = y]] ̸= 0}. (4.24)
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Figure 4.1: Risk as a function of the sample complexity α = n/d for Bayes-optimal AMP on
the 3-index function g(z1, z2, z3) = z21 + sign(z1z2z3). The solid lines denote the theoretical
prediction from state evolution lemma 4.1.1, while crosses denote finite size runs of the AMP
algorithm in eq. (4.4) with d = 500. The vertical lines denote the weak-recovery thresholds
in which the different components are learned. Figure from [Tro+25].

For k⋆ = 2, the inner conditional expectation coincides with the definition of the function
Ĝ(y) = ∇ωgout(y, 0, Ir) given in eq. (4.19) with r = 1. In this case, the condition is equivalent
to the existence of an easy subspace as discussed in section 4.2.2. In [DLB25], this notion was
extended to multi-index models, where an analogous lower bound n = Ω(dk⋆/2) was proven
in terms of a leap generative exponent ℓ⋆, which again matches the condition for AMP easy
subspaces when ℓ⋆ = 2. Taken together, these results demonstrate that LDP, SQ, and AMP
provide consistent notions of typical-case hardness in the proportional high-dimensional
regime for multi-index models. An interesting open problem is to determine whether
AMP-based analyses can be generalised to capture non-linear scaling regimes.

4.3 The grand staircase

The discussion so far has focused on the the analysis of the initial condition M0 = 0. The
classification of trivial, hard and easy subspaces do not account for what happens after
AMP escapes initialisation. Similarly to this case, this will be governed by the other fixed
points of the state evolution equations. As in the analysis of multiple SGD steps discussed in
section 3.2.2, the key idea here will be to hierarchically study what subspaces are accessible
once the algorithm has learned a given space, emplying a similar idea of conditioning. This
requires generalising the notion of trivial, easy and hard subspaces conditionally on a learned
space.

Suppose that the estimator Ŵt has developed an overlap along a subspace contained in
span(W⋆), yielding a non-zero overlapMt ≻ 0. From this point onwards, the main difference
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relative to the previous discussion is that the variable ω in the linear operator F defined in
eq. (4.18) is no longer zero, since it is distributed as ω =

√
Mξ. This modification alters

the span of F(M) and consequently the stability condition in theorem 4.2.2. In particular,
as we show below, learning certain directions may in turn facilitate the learning of larger
subspaces. We refer to this phenomenon as the grand staircase, in analogy with the staircase
behaviour for SGD discussed in Section 3.2.2.

Definition 4.3.1 (Conditionally trivial and easy subspaces). Let U ⊂ Rr. We define H⋆
T (U)

to be the subspace spanned by v ∈ U⊥ such that

⟨v, gout(Y,
√
MUξ, Ir −

√
MU)⟩ = 0 (4.25)

almost surely over ξ ∼ N (0, Ir) and Y for any MU ∈ S+
r such that span(MU) = U . We

define the trivially-coupled subspace T ⋆
U for U as the orthogonal complement of H⋆

T (U).
Analogously, let H⋆

E(U) be the subspace spanned by directions v ∈ U⊥ such that

⟨v, ∂ωgout(Y,
√
MUξ, Ir −

√
MU)v⟩ = 0 (4.26)

almost surely over ξ and Y for any MU ∈ S+
r such that span(MU) = U .

When MU is additionally a fixed point of FM , one can linearise FM along the orthogonal
complement ofU . We define the easy-coupled subspaceE⋆

U forU as the orthogonal complement
of H⋆

E(U). Next, suppose that MU ∈ S+
r with span(MU) = U is a fixed-point of FM . Let

FMU
denote the linearization of F (M) along the orthogonal complement U⊥ at M =MU .

We define the grand staircase threshold αgst(MU) at M = MU as the conditional weak
recovery threshold.

1

αgst(MU)
= sup

M⊥∈U⊥

∥∥FMU
(M⊥)

∥∥
F

(4.27)

The above definitions extend the notions of trivial and easy subspaces in definitions 4.2.1
and 4.2.2 to the setting where recovery is conditioned on a previously learned subspace U .
They identify the directions whose recovery becomes possible once overlap along U has
been established. Concretely, after developing an initial overlap on U , the directions in T ⋆

U

and E⋆
U can be recovered in direct analogy with the recovery of T ⋆ and E⋆ in theorems 4.2.1

and 4.2.2.

Proposition 4.3.1 ([Tro+25],informal). Let U ⊆ Rr be a subspace such that E⋆
U is non-

empty. Consider AMP iterates with the Bayes-optimal choice of denoisers fin, gout (c.f.
eq. (4.6)) for sufficiently small λ > 0. Suppose that Md,t = 1/dŴtW

⊤
⋆ is an approximate fixed

point of F (M) in eq. (4.10) such that Md,t ≈MU where MU spans U . Then:

• For α > αgst(MU), AMP recovers M∗
MU

in additional Θ(log 1/λ) steps for arbitrarily
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small λ, where M∗
MU

denotes any matrix in S+
r achieving the supremum in eq. (4.27).

• For α < αgst(MU) and sufficiently small λ, AMP remains at the approximate fixed
point MU and fails to gain weak-recovery along U⊥.

A concrete example of a function displaying this phenomenon is a linear combination
between hard parity function and an easy polynomial:

g(z1, z2, z3) = z21 + sign(z1z2z3) (4.28)

The sign component corresponds to a sparse parity with r = 3, which cannot be learned with
n = Θ(d) samples. However, the quadratic term z21 in the function enables weak recovery
of the first component, i.e. U = (1, 0, 0), provided that α > 1/2. Conditioned on U , the
effective multi-index model reduces to sign(z2z3), which — as discussed in example 4.2.2
— is an easy function. This behaviour is illustrated in Figure 4.1: the component z1 is first
recovered at α1 ≈ 0.575, and for larger values α > α2, all directions are learned. In other
words, knowing z1 transforms the hard three-parity problem into an easy two-parity one.

4.4 Spectral methods

An unsatisfactory aspect of the AMP-based results discussed above is the assumption of a
warm start in establishing the weak learnability of easy subspaces in theorem 4.2.2. Although
such assumptions are standard in the study of phase transitions in mathematical physics, they
stand in fundamental contradiction with the notion of weak learnability in computer science:
assuming a Θ(1) correlation with W⋆ at initialisation already entails weak recovery of a
subspace. Overcoming this assumptions in the context of AMP is a technically challenging
problem.

To certify that the weak-recovery threshold in theorem 4.2.2 can be attained without
a warm start, we seek an alternative algorithm that both achieves the same threshold from
random initialisation and is simpler to analyse. A natural candidate is a spectral method whose
success or failure follows a BBP-type transition [BAP05].

This perspective — rooted in the Bethe Hessian and non-backtracking operators for
sparse graphs [Krz+13; SKZ14] and pioneered in the context of AMP for single-index models
in [MM19; LAL19; Mai+22] — relies on a simple construction: weak recovery corresponds
to a linear instability of the uninformed fixed point. At the threshold, the spectral radius
of the Jacobian crosses 1; beyond it, an expanding mode emerges. Consequently, locating
the transition reduces to analysing the first-order linearisation of the dynamics, which is
equivalent to power iteration of a data-dependent operator. The spectral properties of this
operator can then be characterised via random matrix theory, thereby providing a proof of
achievability of the computational thresholds without the need for a warm start.
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Linearising the AMP iterations around eq. (4.4) (Ω,W ) = (0, 0) and keeping only the
first order terms yield the following linear system

δΩt = XδŴt −mat
(
Ĝvec(δΩt−1)

)
(4.29)

δŴt+1 = X⊤mat
(
Ĝvec(δΩt)

)
. (4.30)

where vec : Rn×r → Rnr is the vectorisation operation, mat : Rnr → Rn×r its inverse and
Ĝ ∈ R(nr)×(nr) is a block-diagonal matrix with elements Ĝik,jl = δijĜ(yi)kl, with Ĝ(y) the
Jacobian of the gout denoiser, defined in eq. (4.19):

Ĝ(y) = ∇ωgout(y, 0, Ir) = E[ZZ⊤ − Ir|y] ∈ Rr×r (4.31)

From eqs. (4.29) and (4.30), one can proceed in two ways: either solve for δΩ or for δŴ .
Each of these choices yield a different spectral method. For instance, solving for δΩt yields a
power iteration on a data-dependent operator

vec(δΩt+1) = Lvec(δΩt), (4.32)

where L ∈ R(nr)×(nr) is the linear operator with entries:

L(ik),(jl) =
(
(XX⊤)ij − δij

)
G(yj)kl, i, j ∈ [n], k, l ∈ [r]. (4.33)

Note that this operator is not symmetric, and therefore its eigenvalues are complex. For
r = 1, this is the LAMP method from [Mai+22]. On the other hand, solving for δŴt yield a
second spectral method:

vec(δΩt+1) = Tvec(δΩt) (4.34)

where T ∈ R(rd)×(rd) is the linear operator with entries

T(kµ),(lν) =
n∑

i=1

XiµXiν [G(yi) (G(yi) + Ir)]
−1
kl , µ, ν ∈ [d], k, l ∈ [r]. (4.35)

This is a symmetric operator, with real eigenvalues. For r = 1, this corresponds to the Bethe
Hessian method from [Mai+22].

These two methods were analysed in detail in [Def+25]. A first set of result is obtained by
translating the state evolution of AMP into an analogous state evolution for these methods,
yielding a precise characterisation of the spectral edge and of the asymptotic correlation
between the leading eigenvectors and the target indices. However, as with AMP, these
state-evolution-based results rely on the same warm start assumption.
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Figure 4.2: Distribution of the eigenvalues of T , d = 104, for the link function g(z) = r−1∥z∥2,
p = 4. The critical threshold is αc = 2. The distribution is truncated on the left. (Left)
α = 1 < αc. (Center) α = αc. (Right) α = 6 > αc. As predicted by the state evolution, we
observe four eigenvalues (in green) separated from the main bulk, centred around λs = 1
(green vertical line). The vertical purple line correspond to the value λb provided in Theorem
4.4.1 as a bound for the bulk. Figure from [Def+25].

An alternative analysis which does not rely on side information is possible using tools
from random matrix theory. In particular, under an additional technical assumption, one
can establish the existence of a BBP transition for the top eigenvalue, occurring precisely at
the weak-recovery threshold identified in theorem 4.2.2.

Theorem 4.4.1 ([Def+25]). Assume that the matrix G(yi) ∈ Rr×r admits a basis of or-
thonormal eigenvectors independent of y. Then, in the high-dimensional limit n, d→ ∞,
n/d → α, above the AMP weak recovery threshold α > αc defined in theorem 4.2.2, the
largest eigenvalue of T ∈ Rrd×rd converges to λs = 1. Moreover, the empirical spectral
distribution of the pd eigenvalues of T converges weakly almost surely to a density upper
bounded by λb < 1.

Remark 4.4.1 (Relationship to the literature). A concurrent proof of theorem 4.4.1 appeared
in [KZM25], under similar technical assumptions.

The joint diagonalisability assumption is satisfied by all the examples discussed in this
chapter, including the monomials g(z) =

∏
k∈[r] zk and the 2-sparse parity g(z) = sign(z1z2).

However, it fails for certain natural functions, such as g(z) = z1/z2. Extending the proof to
the general case presents a substantially more difficult problem in random matrix theory.
We believe, nevertheless, that this is only a technical limitation: both state evolution and
numerical evidence strongly support the validity of theorem 4.4.1 without this assumption.
Figure 4.2 illustrates the BBP transition on the spectrum of the symmetric method T , as
predicted from theorem 4.4.1.





5 | Conclusion

This manuscript summarises a major strand of my research activity over the past seven years,
since the completion of my PhD in August 2018. The unifying theme of the results presented
here is the question of adaptivity in two-layer neural networks, namely how feature learning
— adjusting to structure in the data during training — enables efficient generalisation in
regimes where data is scarce. The guiding perspective has been that of typical-case analysis,
whereby the investigation of synthetic generative models for high-dimensional structured
data allows for a precise description of the training procedure and the resulting risk. Our
main thread has been the study of multi-index models, a class of functions capturing the
inductive bias that many tasks depend on a small number of linear projections combined
through a non-linear transformation. This class, which includes both simple functions such
as linear models and notably hard ones such as sparse parities, offers a tractable yet flexible
laboratory in which the role of adaptativity in two-layer neural networks can be made
precise.

The starting point of our discussion was the theory of generalisation for non-adaptive
networks, where the features are frozen and only the readout layer is trained. Also known as
the random features model, this hypothesis implements a finite width approximation of a
kernel method. Chapter 2 presented a detailed analysis of the excess risk for empirical risk
minimisation in this problem. Despite its simplicity, this analysis yields important insights
into the interplay (or lack thereof ) between overparametrisation and generalisation, helping
to demystify some of the non-intuitive statistical phenomena first observed in the learning
curves of overparametrised neural networks (section 2.2). Building on these formulas,
section 2.3 investigated the scaling laws of the risk, uncovering cross-overs between fast and
slow scaling regimes, as well as width- and data-driven bottlenecks reminiscent of the neural
scaling laws observed in large-scale models. This analysis also provided a sharp lower bound
on the width required to achieve the optimal kernel rates in the random features model.
We further discussed extensions to other losses and penalties (section 2.5), to deep random
features (section 2.7), and explored the extent to which these asymptotic formulas describe
real data (section 2.6). Nevertheless, as emphasised in section 2.4, the absence of adaptivity
to the underlying data structure in fixed-feature models implies a fundamental limitation of
their generalisation capacity under finite samples.
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Overcoming this high-dimensional bottleneck requires adaptivity. In Chapter 3, we
studied how the network features evolve during the first few steps of training the first-layer
weights. Section 3.2 provided a sharp characterisation of the amount of data required for the
weights to develop meaningful correlation with the target low-dimensional space, identifying
precisely which subspaces are learned in the early stages of training. Section 3.3 analysed how
weak-recovery of a subspace translates into generalisation when the second layer is trained in
a step-wise procedure. A key outcome is that, in the proportional asymptotic regime, feature
learning enables access to a one-dimensional subspace of the target, allowing the network to
potentially learn any non-linear function in this direction. Finally, Section 3.4.3 provided an
in-depth investigation of this regime, showing that feature learning after a single step can be
understood as a BBP transition in the weights, and established via random matrix theory a
sharp characterisation of the excess risk, together with upper and lower bounds that provide
a precise summary-statistics picture of adaptivity in two-layer networks after one training
step. These results show that even limited training suffices to unlock a qualitatively richer
generalisation regime, unattainable at initialisation.

Finally, Chapter 4 discussed the fundamental computational limits of learning Gaussian
multi-index functions in the proportional regime. Leveraging an optimal message passing
scheme, we provided a classification of what what link functions are trivial, easy or hard to
weakly learn from initialisation in the high-dimensional regime, and discuss its relationship
to the SQ framework and low-degree polynomials methods. section 4.3 discussed how the
way subspaces are coupled through the link function can lead to a grand staircase phenomenon,
a hierarchical learning phenomena where hard directions become accessible once they are
coupled to easy directions. To conclude, in section 4.4 we discussed how to remove a warm
start assumptions by deriving optimal spectral methods that allow to study weak recovery
using random matrix theory techniques. These results serve as a benchmark, allowing us
to situate the performance of two-layer networks trained by empirical risk minimisation
relative to the fundamental computational limits.

Taken together, the typical-case analysis of high-dimensional two-layer neural networks
discussed in this manuscript provides a clear mathematical picture of the mechanisms under-
lying feature learning, and shows how adaptivity to structure in the data enables efficient
generalisation. Yet this is just the tip of the iceberg. The fast-paced evolution of deep learning
practice only widens the already considerable gap between our understanding of learning
and generalisation in simple, shallow networks and the methods currently deployed in the
field. Nevertheless, and despite the view that theory risks obsolescence in an increasingly
practice-driven discipline, a solid mathematical foundation remains essential for the sustain-
able and reliable development of this area. I hope this manuscript makes a strong case that
the continued cross-pollination between statistical physics and learning theory, which began
in the 1980s, can play a central role in advancing that understanding.
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ABSTRACT 

This manuscript summarises part of my research activity over the past seven years. The 
unifying theme of the results presented here is the question of adaptivity in two-layer 
neural networks - namely, how feature learning, i.e. adjusting to structure in the data 
during training, enables efficient generalisation in regimes where data is scarce. The main 
focus is the typical-case asymptotic analysis of the generalisation performance of two-
layer networks trained on tasks with underlying low-dimensional structure, the multi-index 
model. Chapter 2 discusses a sharp characterisation of the risk in a non-adaptive setting 
where the network features are fixed, known as the random features model. Chapter 3 
investigates how representational learning during the first few steps of training improves 
generalisation compared with this fixed-feature benchmark. Finally, Chapter 4 addresses 
the fundamental computational limits of learning multi-index functions in the proportional 
regime. Taken together, these results provide a clear mathematical picture of the 
mechanisms underlying feature learning, and demonstrate how adaptivity to structure in 
the data enables efficient generalisation.

RÉSUMÉ 

Ce manuscrit résume une partie de mon activité de recherche menée au cours des sept 
dernières années. Le fil conducteur des résultats présentés est la question de 
l’adaptativité dans les réseaux de neurones à deux couches, c’est-à-dire la manière dont 
l’apprentissage des représentations — l’ajustement à la structure des données au cours 
de l’entraînement — permet une généralisation efficace dans des régimes où les 
données sont limitées. L’accent principal est mis sur l’analyse asymptotique de la 
performance de généralisation typique des réseaux à deux couches entraînés sur des 
tâches présentant une structure latente de basse dimension, le modèle multi-indices. Le 
Chapitre 2 présente une caractérisation précise du risque dans un cadre non adaptatif où 
les représentations du réseau sont figées, aussi connu sous le nom de random features 
model. Le Chapitre 3 étudie comment l’apprentissage des représentations au cours des 
premières étapes de l’entraînement améliore la généralisation par rapport à ce modèle de 
référence à caractéristiques figées. Enfin, le Chapitre 4 aborde les limites 
computationnelles fondamentales de l’apprentissage des fonctions multi-indices dans le 
régime proportionnel. Pris dans leur ensemble, ces résultats offrent une image 
mathématique des mécanismes qui sous-tendent l’apprentissage des représentations et 
montrent comment l’adaptativité à la structure des données permet une généralisation 
efficace.
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