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1 Motivation

Consider the classical supervised learning regression problem with training data D = {(z;,y;) €
R4 2§ € [n]} drawn ii.d. from a joint distribution p(z,y) over R+,
Given a notion of risk, say the quadratic risk

R(f) =E[(y - f(2))"] (1.1)
one can define the minimal risk achievable by a measurable function of the data (the Bayes risk)

R, = inf R(f) (1.2)

For the quadratic risk, the Bayes risk is attained by the Bayes predictor f.(z) = Ely|x], ie.
R, = R(f,). The function f, is also known as the target function, as it is what we would like to
achieve in supervised learning.

One of the key problems in learning theory is to understand how much data is required to
approximate f,. In full generality, fitting an arbitrary target might require exponential number of
samples in the dimension d — a problem known as the curse of dimensionality (CoD). Therefore,
to do better we necessarily need structural assumptions on p.

At first, one might think that regularity conditions on f,. It turns out that regularity is not
enough, as even some quite well-behaved functions f, : R? — R suffer from the CoD, as illustrated
by the follow theorem.

Theorem 1.1 (Tsybakov (2008), informal). Assume z; ~ Unif([0, 1]¢) and that y; = f.(z;) + &;
with f, a 1-Lipschitz function and ¢; a sufficiently well-behaved noise.! Then:
2

inf  sup E[(f(z) — fuo(2))?] 2 n" 7, (1.3)
f«€Lip(1)

where the expectation is over the marginal distribution p(x). Equivalently, we need n(d) 2 55t

in order to approximate f, to precision §.
Remark 1.1. A few remarks are in order.

e Note that the infimum is taken over all measurable functions of the data, i.e. it makes no
assumption on the hypothesis class. This is known as a minimax rate.

e The proof of this result is based on a e-net argument, which involve covering [0, 1]% and using
the regularity of f, to approximate it to a given precision.

'For instance, Gaussian with finite variance.
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This result suggests that stronger structural assumptions are needed to dodge the CoD. A
common folklore in machine learning is that even though the data distribution has some underlying
low-dimensional structure, known as the . In supervised learning, there are two
ways to consider this hypothesis: (a) the covariate marginal distribution has a low-dimensional
structure; (b) the target function f, : R? — R is a low-dimensional function of the covariates. The
class of multi-index models is an instance of (b).

2 Gaussian multi-index models

A multi-index function is a function f : R — R that depends on the covariates z € R only
through a k-dimensional subspace of R%.

Definition 2.1 (Multi-index function). Let wy, ..., w, € S'(v/d) denote an orthonormal family
of r vectors. A multi-index function f : R? — R is defined as:

f(@) = g ({w,2), ..., (wr, ) (2.1)

where ¢ : R¥ — R is a non-linear function known as the link function. Equivalently, we denote
y = g(Wz) where W € R"™*? is the row-orthogonal matrix WW T = dI} obtained by stacking the
vectors (wy)pe[r) Tow-wise. In particular, when r = 1 we say f is a single-index function.

Remark 2.1 (Random link function). A common variation consists of allowing g to be a (possibly)
stochastic function. In this case, we denote y ~ P, (y|Wz), where P, denote the model likelihood.
Note that the case of a deterministic ¢ is a particular case given by P, (y|Wz) = (y — g(Wx)).

Example 2.1. Many classical functions studied in learning theory and signal processing can be
written as multi-index functions:

e Linear functions (r = 1): g(z) = z.

Phase retrieval (r = 1): g(z) = |2|
i

Perceptron (r = 1): g(z) = sign(z)

Polynomials (r > 1): g(z) = 21 ... 2.

Parities (r > 1): g(z) = sign(z1 ... 2,)
e Two-layer neural networks (r > 1): g(z) = >, _; aro(zk).
where we denoted z, = (wg, ), k € [r].

In the following, our main object of study will be supervised learning problems where the
training data D = {(x;,3;) € R™! : i € [n]} is drawn according to Gaussian multi-index model
(GMIM): the covariates are drawn i.i.d. from a isotropic Gaussian distribution, and the labels are
given by a multi-index function:

yi ~ Py (W), x; ~ N(0,Yaly), iid. (2.2)

We will further assume that the weights are uniform vectors in the sphere wy 5 ~ Unif (S9! (v/d)),
iid. on k€ [r].?

Remark 2.2. Information theoretically, learning a GMIM should be considerably easier than a
general smooth function in R%. Indeed, if the linear subspace span(W,) is known, we can apply
theorem 1.1 directly to g, changing d — r, which requires n = O(r~*/*+"). On the other hand,
estimating the linear subspace span(W,) requires n = O(d). Therefore, if d > r we can expect
that information theoretically learning a MIM to require n = O(d).

Finally, let’s define what we mean when we say “to learn” a multi-index function. In particular,
two notions will be useful.

*For some computations it will be more convenient to assume W, is a Gaussian matrix with i.i.d. entries N(0,1).
Although this can be technically different, we will only use these interchangeably when they are equivalent in the
asymptotic limits studied here.
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Definition 2.2 (Learnability). Let D = {(z;,v;) € R4"! : i € [n]} denote n samples from a GMIM.
Denote by W (D) an estimator of W,,* which we assume has norm HWHF = 0(d).

o We say that W has weakly learned or weakly recovered a subspace V, C span(W,) if:

ww,
inf o I =04(1), w.hop. asd— oo (2.3)
lofl,=1 2

e Similarly, we say that W has fully learned or fully recovered a subspace V, C span(W,) if:

WwW, v
i % =1 .hep. .
H”%l‘ﬁ* y 2 ,  w.hp.asd— oo (2.4)
v|[,=1

Note that full-recovery is equivalent to W =W, up to rotational symmetry.

Remark 2.3. Note that weakly learning a subspace implies that the risk in eq. (1.1) is smaller
than the risk associated to a estimator, i.e. 1wy ~ Unif(S%~1) i.i.d. Similarly, full-recovery implies
R = R,.

Although both notions are important, our main focus in the following will be on weak learn-
ability.
3 Fundamental computational limits

As we saw in section 1, the best estimator in quadratic error is given by the posterior mean. Given
the training data, the posterior is given by:

p(W|D) = D [[ y (yi| Wy) (3.1)

Therefore, understanding the fundamental limits of learning a GMIM in the high-dimensional limit
d — oo is equivalent to understanding the marginals of the posterior distribution in the high-
dimensional limit.

3.1 Approximate message passing

Our main tool will be the approzimate message passing algorithm. This is an iterative algorithm
that seeks to approximate the marginals of the posterior eq. (3.1) from an initial guess Wjy:

O = Xfin(BuAt) - gout(yaﬂt—la Vt)VtT (32)
By = X gout(y, 2, Vi) — fin(Be, A Al (3.3)
where ; € R™ " and B, € R¥™" are matrices with rows w;,b; € R", respectively, and fi,(;A) :

R"™ — R" and gout(y,;V) : R x R” — R are two vector-valued functions acting row-wise on the
matrices By, (;:

Gout (¥, w, V) = E. a0,y [V Hz —w)P(yl2)] fin(b,A) = (I, — A" 'b (3.4)

and As, V; are given by:
1 1
At - E iz:;vwigout(yiawiv‘/i)a E z:: b fm b]7A ) (35)

Finally, the estimate of W, after T steps is obtained by Wanlp = fin(Br, Ar)T

3In other words, any measurable function of the training data.



Remark 3.1. A few comments on this algorithm are in order.

e Intuitively, AMP can be seen as a two-step process, where one first seeks to estimate z € R"
from y = g(z) and then W € R"™? from z = Wx. Indeed, the functions fi,, gous defined in
eq. (3.4) are precisely the optimal Bayesian denoisers for these two estimation problems.

e AMP is a first order method: it involves only evaluations of r-dimensional functions and
matrix multiplication operations by X € R"*? and X T € R¥*". Therefore, for r = O(1) its
running time complexity is dominated by the matrix-vector product, which linear in the size
of X: O(nd).

e Indeed, AMP is asymptotically the optimal first order method when n,d — oo at fixed
n/qg — o = ©(1). This has been proven by Celentano et al. (2020); Montanari and Wu (2024).
Therefore, AMP provides a fundamental computational lower-bound for the class of first order
algorithms.

The key fact that makes AMP a powerful theoretical tool is that its asymptotic performance
can be tracked by a set of state evolution equations.

Lemma 3.1 (State evolution (Aubin et al., 2019; Gerbelot and Berthier, 2023)). Let D = {(z;,v;) €
Rid"'l 21 € [n]} denote i.i.d. samples from a GMIM eq. (2.2). Run AMP from random initialisation
W, € R™*4 with Wo,x ~ N (0, I;) i.i.d. Denote by W; the resulting estimator at time ¢ € [T']. Then,
in the high-dimensional limit n,d — oo with fixed ratio 7/a — a = ©4(1), constant r,T = ©4(1),
the limiting overlaps satisfy:

1. - 1.

W L, W] L My, (3.6)
with M, satisfying the state evolution equations from initial condition M, iterated with:

My = F(My) (3.7)

where:
F(M) =G (QE [gout (Yu VME T, — Mt>®2:|> . (3.8)

where G(M) = (I, + M)"*M € R"*" and the expectation is taken over the following effective

process
Yi=g (VI = MiZ +/Mig) (3.9)

with Z, & ~ N(0, I,.) independently. The asymptotic mean-squared error on the label prediction is
then given by:

B | (- o (WiCxe)) | 5 B - g2,

where the expectation is taken over the effective estimation process eq.(3.9) and L, denotes con-
vergence in probability w.r.t the training data as n,d — oc.

Remark 3.2. It can be shown that F' preserves the symmetry and psd properties. Therefore, if
My > 0 is a symmetric psd matrix, so is M1 = F (M) for every t € [T].

The state evolution equations reduce the problem of understanding the fundamental computa-
tional bottlenecks of learning GMIM in the high-dimensional limit to studying a dynamical system
on psd matrices M € R"™*"

3.2 Weak recovery threshold

Note that if we randomly initialise AMP, independently of W,, the initial overlap matrix will be
element-wise asymptotically small:

(W0, W 1)
d
This means that in the d — oo limit, state evolution from a so-called uninformed initialisation is

strictly the zero matrix My = 0. Therefore, we must study where do we go from 0 under the state
evolution eq. (3.7). In particular, we first need to understand if zero is a fixed point.

= O(1/va) (3.10)



Lemma 3.2 (Existence of uninformed fixed point). M = 0 € R"™*" is a fixed point of the state
evolution eq. (3.7) if and only if the following condition holds almost surely over the effective process
Y =g(Z) for Z ~N(0,1,):

dz

® )d/ze—%“z\lipymz) =0 (3.11)
I3 ™

Gouws (Y50, 1) = E[Z|Y] = /

Note this is an intrinsic property of P,(Y|-), and it is satisfied for instance if P, is an odd
function of z.

Trivial functions — Note that if M = 0 is not a fixed point of eq. (3.7), we have My, i.e.
a single iteration of AMP away from initialisation, no matter how small is the sample complexity
a > 0 suffices to weakly recover a subspace T} of dimension dim(7}) = rank(M;). We call this a
trivial subspace. More formally, we can define:

Definition 3.1 (Trivial subspace). Let H, C span(W,) denote the subspace spanned by the vectors
v € R” satisfying:

(gout (Y, 0,1,.),v) = dlim E[(Wj—v,xﬂY =y]=0 (3.12)
— 00

where equality holds almost surely over Y = g(Z) with Z ~ N(0,1,.). The trivial subspace T} is
define as the orthogonal complement of H,, i.e. span(W,) =T, ® H,

Given this definition, we can show that:

Theorem 3.1. For any « > 0, with high-probability as d — oo, the AMP algorithm eq. (3.2)
weakly recovers T, as per eq. (2.3) in a single iteration.

Example 3.1. To get some intuition, we can have a look at a few examples of trivial subspaces.

e For single-index models (r = 1), T, is one dimensional if and only if g is non-even, e.g.
g(z) = Hes(z). This follows from requiring that gout(y,0,1) # 0 for at least one value of y.

In particular, on any open interval where gou is invertible we have gou = ¢~ 1.

e For a linear multi-index model, g(z) = >";_; z;, T\ is spanned by 1, € R" (all-one vector).

e For a committee g(z) = Y ,_,sign(zy), the trivial subspace T} is again 1d, spanned by
1, e RP.

e For monomials g(z) = 27 ... 2., the trivial subspace T} is non-empty if and only if p = 1.

e For leap one staircase functions (Abbe et al., 2023b):
9(z) =21+ 2120+ 212223+ ... (3.13)

The trivial subspace is T, = R" and is spanned by the canonical basis. In other words, AMP
learns all the directions with a single step for any « > 0.

Remark 3.3 (Optimal label pre-processing). The condition on lemma 3.2 can be related to com-
putational models based on queries, such as SQ learning (Kearns, 1998). Indeed, the denoiser gout
can be interpreted as a non-linear transformation on the labels y — gout(y, 0, I,.). From this per-
spective, the statement on the condition for the existence of a non-empty trivial subspace translates
to the condition

Elgout (y. 0, I;) "o{W, v, )] = E [E(W,[ v, 2)[Y = y]*] #0 (3.14)

where v € T,. The left-hand side can be seen as a statistical query of the type E[¢(y)y(x)] with
label pre-processing ¢ = gout- In fact the denoiser g,y is the optimal such transformation in
the sense that when g,y fails to obtain a linear correlation along v, i.e when v € T, then no
transformation can.



Easy functions — On the other hand, if M = 0 is a fixed point of eq. (3.7), we can have two
types of behaviour: it can be an unstable fixed point (repeller) or stable fixed point (attractor) of
the dynamics. These will behave very differently: if we initialise Wy such that ||[Mo|ly ~ € > 0
arbitrarily small, a repeller implies that M; will move away from 0, while an attractor will attract
back 0. In other words, if M = 0 is an attractor, a random initialisation will not be enough for
AMP to meaningfully correlate with W, at larger times. To characterise the stability of a fixed
point, we need to look at the Jacobian of F' around M = 0:

F(M) ~ aF (M) + O(||sM]*) (3.15)
where F(6M) is a linear operator on the cone S of psd matrices of dimension 7:
F(M)=E[GY)MG(Y)T]. (3.16)

where the expectation is with respect to Y = g(Z) with Z ~ N(0, I,.), and the operator G is given
by:

G() = Vogour (4,0, 1) =E[ZZT — I.|y] e R™*" (3.17)

The stability of the M = 0 fixed point is then closely related to the operator norm of F on the
psd cone:

Lemma 3.3 (Stability of the uninformed fixed point). If M = 0 € R"*" is a fixed point of the state
evolution equations. Then, it is an unstable fixed point if and only if || F(M)||p > 0 and n > a.d,
where the critical sample complexity a., known as the weak recovery threshold, is given by:

1
= sup [F M), (3.18)

Moreover, if F(M) # 0, there exists at least one M, # 0 € SZ‘," achieving the above supremum.
While if (M) = 0, then M = 0 is a stable fixed point for any n = ©(d).

This implies that for a > «, iterating the state evolution equations eq. (3.7) will eventually
move us away from initialisation, provided we have My # 0. We can further characterise the
subspace learned in this case, which we denote the easy subspace:

Definition 3.2 (Easy subspace E,). Let H, C span(W,) denote a subspace of directions v € R"
satisfying X
(v,G(Y)v) =0, (3.19)

almost surely over Y = g(Z), Z ~ N(0,1,). We define the easy subspace E, as the orthogonal
complement of H,, i.e. span(W,) = E, ® H,

The challenge in showing AMP effectively learns the easy subspace for a@ > a. from the state
evolution equations and random initialisation is that, strictly speaking, M = 0 which is by con-
struction a fixed point of the state equations. A standard approach to dodge that is to assume an
arbitrarily small (but ©4(1)) initial overlap, and showing that AMP converges to the easy subspace
in a time that does not diverge too fast as this initial correlation vanishes. Formally, this equivalent
to assuming we have access to an arbitrarily noisy version of W, also known as side information
channel:

S=VAW, +V1-XZ (3.20)

where Z € R"*4 is a random Gaussian matrix with A/(0, 1) entries, and A > 0 quantifies the amount
of side information.

Theorem 3.2. Let My, := 1/thW*T denote the model-target overlap matrix at any finite time
t. Suppose that T, = 0 and consider the AMP algorithm eq. (3.2). Then, with high probability as
d— oo

(i) For a > ag, 36 > 0 such that for sufficiently small A\ ,M! = 6M, for t = O(log!/x), where
M, is any of the extremisers defined in eq. (3.18). Furthermore, there exists an a > a, and
a 6 > 0 such that M! = Mg, in t = O(log 1/x) iterations, where Mg+ € S, spans E,.



(i) For a < a. however, M} = 0 is asymptotically stable i.e. there exist constants X' < 1 and
C > 0 such that for A < X, sup,s, [[M}]| < CVA.

Theorem 3.2 formalises our intuition about the stability of the uninformed fixed point. It implies
that for a < a, not only does AMP fail to find any pertinent directions, but it also fails to improve
on the small side-information. For o > «, however, AMP will develop a growing overlap M; along
a non-empty subspace starting with itarbitrarily small (but ©,4(1)) side information.

Remark 3.4 (Warm start). Heuristically, we would like to identify A = ©(1/a). Of course, this
is not justified, since in the state evolution equations we have already taken the high-dimensional
limit, and would imply A = 0 in this limit. To make sense of this in the AMP framework, we
would need to a non-asymptotic control of the state evolution equations. This is mathematically
challenging, and only available for a few simpler problems, see (Rush and Venkataramanan, 2018;
Li and Wei, 2022; Li et al., 2023).

Remark 3.5 (Spectral methods). An alternative approach is to construct other algorithms achiev-
ing the same asymptotic weak recovery threshold a., which by construction is the optimal compu-
tational threshold for first order methods. A standard approach is to construct spectral methods
from linearising AMP, which maps weak recovery into a BBP transition problem for a matrix. This
idea was pioneered by Mondelli and Montanari (2019); Luo et al. (2019); Maillard et al. (2022) in
the context of single-index models (r = 1), and has been recently generalised by Kovacevié et al.
(2025); Defilippis et al. (2025) to the multi-index case. On a high-level, this consists of linearising
AMP around the uninformed fixed point and closing the equations on §2;:

51 = T (3.21)

where T' € RUDX(rd) j5 an operator with entries

Thop),(1v) = ZXz'uXw [G(y:) (G(yi) + L) v €[d, klelr] (3.22)

i=1

where G(y) was defined in eq. (3.17). Based on a state evolution argument, Defilippis et al. (2025)
shown that this matrix has a BBP transition precisely at the optimal weak-recovery threshold a.
of theorem 3.2. This was rigorously proven by Kovacevié¢ et al. (2025); Defilippis et al. (2025) in
the particular case in which the matrix G(y;) is jointly diagonalisable for all y;, which is the case
for many of the cases of interest.

Open problem: Prove this for general G.

Example 3.2. Two examples of easy multi-index functions.

e The monomials g(z) = [[;_; 2k with 7 > 1 can always be learned with a > a.(r) (Chen
and Meka, 2020). For instance, we have a.(2) =~ 0.5937, a.(3) =~ 3.725, a.(4) ~ 4.912 and
ae(r) ~ 12 for large r.

e The 2-sparse parity g(z) = sign(z122) is easy, and can be learned with a, = 7°/4.

Hard functions — Finally, there are functions for which M = 0 is a stable fixed point for all
a = 04(1), meaning o, — 00, i.e. the supremum in the right-hand side of eq. (3.18) is zero. This
is what we call a hard function. A canonical example of a hard function is the r-sparse parity for
r > 2

9(2) = [ [ sien(zx) (3.23)
k=1

Remark 3.6. A few final remarks.

e Single-index models: The computational weak learnability threshold for single-index mod-
els were first established in (Mondelli and Montanari, 2019; Luo et al., 2019; Barbier et al.,
2019). Barbier et al. (2019); Maillard et al. (2020) have also studied the computational and
information theoretical thresholds for full-recovery in this simpler case.
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Figure 1: Weak learnability phase transitions for g(z1, 22, 23) = 2% + sign(z12223).

e SQ and LDP: Interestingly, Damian et al. (2024) have shown that the AMP weak re-
covery thresholds for single-index functions coincide exactly with the ones predicted by SQ
lower-bounds and the low-degree polynomial method for the so-called generative exponent
2 functions, which are by definition functions for which a. < oco. For SIM with generative
exponent > 2, we have a, = co — these are, by definition, the hard single-index functions
from the AMP perspective. Recent work by Damian et al. (2025) extended some of these
notions to multi-index functions.

e Hierarchical Learning: The discussion so far has focused on the the analysis of the initial
condition My = 0. The state evolution equations, however, can have other fixed points. The
notion of easy and hard subspaces can be promptly generalised conditionally on a learned
subspace. This allows to study the flow of AMP from fixed point to fixed point, which can
lead to interesting hierarchical learning phenomena. For instance, a hard multi-index function
sign(z12023) can become easy once it is coupled to an easy function 27, i.e. g(z) = 22 +
sign(z12223). In this case, AMP first learn the function 2z? at sample complexity a. 1 ~ 0.575,
and after it is able to learn the hard part at a2 = =*/4. This was studied by Troiani et al.
(2025), and to contrast with the staircase phenomenon for SGD is was named the grand
staircase. See fig. 2

4 Learning with 2LNN

In the last section, we saw that (most of) GMIM can be (weakly) learned efficiently and with
n = O(d) with a tailored AMP algorithm in the high-dimensional setting d — co. But what about
“standard” machine learning algorithms?

We will now consider the complexity of learning a GMIM with a two-layer neural network:

12
flw;0,W) = %;%0’((%‘%)) (4.1)

where o is a non-linear activation. Our main question here will be to understand how adapting to
the data during training, i.e. feature learning, allow the network to efficiently learn a GMIM.

However, before attacking this question it will be important to understand first what non-
adaptive networks, i.e. networks with fixed features p(x) = 1//po(Woz) can learn. Indeed, two-
layer networks with fixed feature maps can be seen as a truncation of a kernel method, the so-called
random features approximation. Since kernels are universal approximators (Micchelli et al., 2006),
any f, € L?(p,) can be learned with enough data — and this will hold for random features provided
p is large enough and o is not poorly chosen.



4.1 Initialisation
Given the discussion above, consider a two-layer neural networks with a random, fixed first layer
weights wo ; ~ N (0, I;), where we only train the second-layer:

n

A 1 A
ax(X,y) = argming -3 (yi — f(xi:a, Wo)) + 5 llall3 (4.2)

n
acR? i=1

where the training data has been sampled from a GMIM. Note that this admits a closed-form
solution, which can be written in terms of the feature matrix ®;; = c({wo.;,2:))/ /p:

ir(X,y) = (®T® +nAL,)  dTy =0T (@07 +nAL,) 'y (4.3)

The linear operator y € R™ — ax(X,y) € RP maps the training data into the column-space of
the feature matrix Image(® ") C RP, which is a linear subspace of the feature space (of dimension

rank(®) = min(n,p)). To see this explicitly, consider the SVD of ® = Z}ri?(”’p) 6*jujva:

min(n,p)

&,\(X, y) =

a-.
ﬁ]&?@ﬁj’y)va‘ (4.4)

j=1

which has the form of a shrinkage operator. Therefore, in order to understand what can be fitted
by our RF method in the high-dimensional limit, we need to understand the singular values 6 of
the feature matrix ®, or equivalently the eigenvalues of the covariance ® " ® or kernel matrix ®® "
in this limit.

Since the data is Gaussian, it is useful to decompose the target function in an orthonormal basis
with respect to the distribution of the covariates. Since we assume x; ~ N(0,1/dl;), this is given
by the Hermite tensors:

ful@) =" > CoHal(z) (4.5)
m=0 ow’c‘ZdJr

lee|=m.

where o € N? is a multi-index and H,(z) = Hle ha,(x;) are the Hermite tensors. This basis

induces an orthogonal decomposition of L?(R%,p,) = D,.>1 Vin, where V,, is the linear space
spanned by polynomials of degree m = |a|. The dimension of each subspace is given by:

. d+m—1
dim(V,,) = ( . ) (4.6)
The coefficients ¢, quantify how much of the total energy of the target || f.|[2 = > ¢2 lies in each
subspace.

Since the ridge predictor in eq. (4.3) spans a linear subspace of dimension r = min(n,p), a
naive power counting suggests that to learn the component of the target in subspace V,,, requires
r = O(m), with the minimum between the number of samples n and the width p being the
bottleneck for approximating V,,. Therefore, to fit the components up to < x of the target,

one requires:

min(n,p) ~ Z

m=0

" fd+m—1
m

) = 0(d") (4.7)
This intuition was made precise by Mei et al. (2022), who proved the following theorem:
Theorem 4.1 (Mei et al. (2022), informal). With min(n, p) = O(d"*), the random features predictor

in eq. (4.2) can learn at best a degree k approximation of the target function f,. In other words:

E [[|f(z;ax, Wo) = fu(@)[5] = |[P>xfellL2(p,) + 0a(1) (4.8)

Remark 4.1. The key ingredient in the argument above is that the data distribution is isotropic.
This implies that the target will have energy uniformly spread over the different frequencies in the
orthogonal decomposition. Similarly, since the features are not adapted to the structure of the
data, to fit a given frequency it requires spanning the full space to be fitted.
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Figure 2: Nlustration of Theorem 4.1
Gaussian universality — What is nice about the above result is that it can be made more

quantitative in the high-dimensional limit. Consider the high-dimensional regime we studied in
Section 3, where we take d — oo with n,p = ©(d). In this limit, theorem 4.1 tell us that the best
we can hope is to fit a linear approximation of the target:

fi(@) = (0x, ) + fu() (4.9)

where 6, € R? are the coefficients in the linear part of the decomposition in eq. (4.5), while f,; are
all the remaining, non-linear part that lead to the irreducible error — playing a role equivalent to
label noise. Given this, an exact characterisation of the population risk associated to the predictor
eq. (4.3) is a random matrix theorem problem. The key challenge in this problem is to deal with
the Wishart matrix ®'® from non-linear features ® = 1/,50(XW, ). Again, the key idea is to
consider the Hermite decomposition of the feature map:

o(2) = Y bmhm(2) (4.10)

m>0

Using this, the feature (population) covariance matrix is given by:

50 = Blo({un.2)o((un )] = 3, (L0104)) (a.11)

m=0

Note that since the neurons are independent, the scalar product above is of ©(1) for j = k and
O(1/vd) for j # k, meaning that the frequency m has weight ©(d~™/?) in the decomposition of
the off-diagonal components. Therefore, to characterise the error in the high-dimensional limit, it
suffices to keep the leading order terms in this expansion:

S bgl,l) +BEWW T + 020, (4.12)

where b? = Yo b2 . Higher-order terms, as well as corrections to the diagonal term, are negligible
in the limit. With matrix concentration arguments, this approximation can be carried over to the
empirical feature matrix.

Overall, this argument implies that studying the model with non-linear features ® = 1/,/50(XWy) "

is equivalent to studying a model with Gaussian features:
Din = bolp + by XW, +b.Z (4.13)

where Z is a Gaussian matrix with i.i.d. Gaussian entries A(0,1). This result, known as Gaussian
university, was formulated in (Mei et al., 2022; Goldt et al., 2020, 2022; Hu and Lu, 2022; Montanari
and Saeed, 2022), and was used to derive an exact asymptotic description of the population risk
for the random features model in Mei et al. (2022); Gerace et al. (2020); Dhifallah and Lu (2020).
Complementary RMT results on the asymptotic spectral density of the empirical covariance matrix
of non-linear features appeared in (Pennington and Worah, 2017; Liao and Couillet, 2018; Fan and
Wang, 2020; Benigni and Péché, 2021).
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Remark 4.2. Generalisations of this result in different directions abound.

e Similar universality results were derived for deep random features model in the proportional
regime by Schroder et al. (2023); Bosch et al. (2023); Schroder et al. (2024).

e Universality results beyond the proportional regime were derived by Lu and Yau (2022); Xiao
et al. (2022); Hu et al. (2024).

¢ Random matrix theory analysis under general concentration assumptions on the feature map
Misiakiewicz and Saeed (2024); Defilippis et al. (2024)

4.2 Away from initialisation

The result of theorem 4.1 holds for any target function f,, and is completely agnostic to the
underlying low-dimensional structure of the GMIM. Indeed, in order to do better than polynomial
fit, the features of our 2LNN neural networks must adapt to the structure of f,, i.e. learn features.
Ideally, we would like to understand the joint training of both layers of f(x;a,W). However,
this is a challenging problem in general. Therefore, we will start with a simplified setting, which
nevertheless will allow us to see the benefits of learning features.

Consider the following two-step training procedure:

1. Initialise ag, Wy randomly but in a balanced way, such that f(x;aq, Wy) ~ 0.*

2. Take a single GD step on the first-layer weights W on a batch of training data Dy with ng
samples drawn from the GMIM defined in eq. (2.2):

1 &
Wy =Wy — " > Vw (yi — flwi; a0, Wo))? (4.14)
i=1

3. Train the second layer with fixed first layer W; on a fresh batch of data D; with n samples
drawn from a GMIM:

n

1 A
ox(X,y) = orguming 3 (s = S0, W)+ ol (4.15)

Given this procedure, our goal is to understand how the error of f(x;ay, W) compares with the
initialisation baseline studied in section 4.1, as a function of the learning rate 7, batch sizes ng,n
and the dimensions p, d.

Again, eq. (4.15) admits a closed-form expression in terms of the feature matrix ® = o(XW;").
The key difference is that now the features are correlated with the underlying data structure, since
both batches were generated from the same multi-index target with weights W, € R"*9,

4.2.1 Weak recovery

A first natural question consists of quantifying this correlation. Since f(x;ag, Wy) ~ 0, the first-step
gradient is given by:

a07
g; = no\}Zg (Wyxi)zio' ({(wo j, ;) (4.16)

Again, it is natural to proceed by considering the Hermite decomposition of the activation ¢ as in

eq. (4.10) and of the MIM link function in the Hermite tensor basis. For simplicity of exposition,
let’s consider the single-index case r = 1, where:

9(2) = Conhun(2) (4.17)

4Either exactly or in the high-dimensional limits considered in the following.
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Then, the correlation with w, satisfies in expectation:

E[(g;, w.)] = “;};’E[gwa(zj)z*] = %E[g'(z»a'(zﬁ]

ao,j <w0,j,w*>>m
= —= E Cm bm _ 4.18
\/T m=0 ' ' ( d ( )

Again, the correlation in brackets is ©(d~1/?), and therefore the sum will be dominated by the
lowest non-zero frequency term. Provided o is not degenerated and a; = ©(1), this is given by the
so-called information exponent (Arous et al., 2021):

my, = min{m € Z, : E[g(2)h,(2)]} (4.19)

Therefore, the correlation with the first step ng; remains ©(1) as long as:
n my—1
1 —e (dT ) (4.20)
VP
Otherwise, for any scaling below this one we will have vanishing correlation in the high-dimensional
limit. Dandi et al. (2024a) has shown that this correlation concentrates as soon as n = (d"*),
with n = ©(d™+~?) leading to zero asymptotic correlation for arbitrary § > 0.

Theorem 4.2 (Dandi et al. (2024a), informal). Consider a single gradient step on the first-layer
weights of a 2LNN trained on ng samples drawn from Gaussian single index model with learning
my —1

rate 7/,/p = O(d” 2 ), where m, is the information exponent of the target link function. Then, for
any j € [p|, with high-probability:

lim (4.21)

d—oo [|wy|[2|[ws]2

<w1,j7w*> =0 ng = @(d'rrz*—&)
20 ng=Q(d™)

Remark 4.3 (Previous work). A few remarks on related works in the literature.

e The information exponent was introduced by Arous et al. (2021) in the context of analysing
one-pass SGD for learning a well-specified Gaussian multi-index function. In this case, it was
shown that the sample complexity is given instead by n = ©(d™~1).

e Indeed, both large-step GD and one-pass SGD can be seen as CSQ-type algorithms. CSQ
lower-bounds imply that ng = @(dm*/ 2) samples are required to weakly learn in this class.
Leveraging landscape smoothing ideas from Biroli et al. (2020), Damian et al. (2023) showed
that one-pass SGD on a smoothed loss can achieve this lower-bound.

e The result that with constant learning rate n = ©(1) the correlation between the step and
the features vanish for p = ©(d) first appeared in Ba et al. (2022). Indeed, in this work it
was shown that the Gaussian universality discussed in eq. (4.34) still holds, and therefore the
error remains bounded by the best linear predictor.

This computation can be generalised to the multi-index case r > 1 by considering instead
the decomposition of g in the Hermite tensor basis. In this case, the relevant quantity governing
the sample complexity is a generalisation of the information exponent to tensors: the lowest non-
vanishing sector in the tensor decomposition of g. This was introduced by Abbe et al. (2023a) and
is known as the leap exponent. The learned subspace then corresponds to the space spanned by
the principal directions of the tensor singular value decomposition of the target tensor coefficients
Chm,:

Cre = D it s @ O, (4.22)
jl:---vjrn*
A summary of the full result is given in fig. 3. The main take aways from this result are:

e With ng = ©(d), one weakly learns at best a linear approximation of the multi-index target.
This linear approximation is given by the weighted sum of the multi-index directions, where
the relative weights are given by the information exponent associated to each direction.
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Figure 3: Illustration of the relationship between batch size and target function complexity for learning
multi-index functions with a single giant step in the ng = ©(d*) regime.

e To weakly learn a subspace of dimension larger than one, one needs at least ng = ©(d?) data.
This generalises the result of Damian et al. (2022), who showed that with n = w(d?) samples,
two-layer neural networks can specialise to more than one direction of a multi-index target
function with ¢ = 2.

Remark 4.4 (Multiple GD steps). The discussion above can be generalised to multiple GD steps,
which can lead to the learning of additional directions and interesting hierarchical phenomena.

e Under the assumption that fresh data is used at every step, it can be that that even at
limited sample complexity ng = O(d) there is a class of functions for which all directions
can be learned. The so-called staircase functions were first introduced and studied by Abbe
et al. (2021, 2022, 2023b) in the context of one-pass SGD. They are functions for which the
different directions are conditionally linearly coupled in a progressive fashion, the canonical
example being g(z) = 21 + 2122 + 212223, etc — see Abbe et al. (2021, 2022, 2023b) for a
formal definition.

e The picture can be drastically different when data is reused. This was first studied by Dandi
et al. (2024b), who showed that certain high-information exponent functions such as g(z) =
hs(z) can be weakly learned in two full-batch GD steps under data reuse. Surprisingly, a
similar phenomenology holds for a simple SGD algorithm where each data point is seeing
exactly twice before being refreshed, and was studied in two concurrent works by Lee et al.
(2024); Arnaboldi et al. (2024).

Open problem (Optimality of GD): How does the pre-processing function induced by
data reuse compare to the optimal pre-processing from AMP? Can we derive sharp asymptotic
weak-recovery thresholds? How do they compare?

4.2.2 Generalisation error

How does the correlation in the features translate to generalisation when training the second layer
a)? This is a considerably harder problem to analyse. However, we expect that with enough
data one can possibly learn any non-linear function in the subspace learned by the gradient step
U C span(W,). What about the unlearned directions? These should require a sample complexity
comparable to the random features model.

To formalise this, let’s look at a simple case where U = {v}, i.e. only a single direction has
been learned. Then, for any point € R?, we can decompose x = x* + v where (z*,v) = 0. Since
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x is Gaussian, so is #1). Then, we can decompose the target function:

fe(@) = fu(zt +v) ZZC zt) (4.23)

m=0 aEZd
Ia\:m

where C,(v) = E[fi(x" + v)Hq(z1)] Given a sector k € Zy, we define the projector Py s, as a
high-pass filter that only retain frequencies m > k:

Pusefe@) =Y > Calv)Ha(zh) (4.24)

m>g and
Ia\:m
With this notation, we can formalise our conjecture:

Conjecture 4.1 (Dandi et al. (2024a), informal). Assume that min(n,p) = ©(d") and that the
first layer W7 correlates with a subspace U C span(W,). Then, ridge regression on the second layer
weights satisfies the following lower-bound

E (@) = f(z:an, W)’ 2 |1 Posnill}, = ol1), (4.25)

Where Py~ is the projector defined in eq. (4.24).

Although proving this conjecture in full generality is an open problem, there is one particular
case for which we know exactly how the error behaves.

Conditional Gaussian equivalence — The starting point to derive a sharp characterisa-
tion of the error is to have a better control of the gradient in eq. (4.16), which we repeat here for
convenience:

9 = — nzo\’][Zf* z;)o’ ((wo,j, 7)) (4.26)

Similarly to how we did for the features in eq. (4.34) we can use the Hermite decomposition of the
activation in eq. (4.10) to separate the leading order component:

2i0% 1 ((wo 5, )

n
_ 8041 T
—9; = % Z YiTi +

i=1
=ujv+ A (4.27)
where by = E[o(z)z], and we defined the spikes:

apby

1
u=—=€RP, v:—Zyimi (4.28)
VP it

Note that u € RP contains information about the first layer initialisation, while v € R? correlates
with the target directions via g;, and A € RP*? denotes the remaining part. In the proportional
limit, it can be shown that A is subleading with respect to the spikes, in the following sense.

Lemma 4.1. With high-probability as d — oo with ng, p,n = O(d):

e Isotropy For any target direction w, € R%:

(A, w,p) = O (Imlzl\;g(d)) (4.29)

e Small operator norm:

181k =0 (P72 (430
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Figure 4: Illustration of the functions realising the upper bound (4.35) (orange) and lower bound
(4.36) (blue), for o = tanh, for a target o, = sin (dashed black).

e Orthogonality:

(Aj,Ar) =0 <w> (4.31)

This means that we can effectively treat the one-step update as a rank-one correction to the
initial weights:

Wi =Wy +nuv + A (4.32)

Therefore, understanding the generalisation error of ridge regression after one step is equivalent to
analysing a spiked random features model with feature matrix:

1

with spike correlated with the target direction (v,w,) > 0.°, where we have neglected the correction
A.% This problem has been studied with statistical physics techniques by Cui et al. (2024), and
later proven using RMT by Dandi et al. (2024b). The attentive reader can probably guess that the
key step in this analysis is a linearisation of the feature matrix, similar to eq. (4.34), but taking
into account the spike:

o ((woj, ;) + nuj(v, z;)) (4.33)

O3 = bo(u;k) + b (uk) (wo,j, i) + bu(uw) Zi (4.34)

where we defined k = (v, ), which conditionally on the spike v € R? is a Gaussian random variable.
This result is known as the conditional Gaussian equivalent, and was first derived in Dandi et al.
(2023) in the context of universality results for Gaussian mixture data. It was later adapted for
spiked features in (Dandi et al., 2024a; Cui et al., 2024; Dandi et al., 2024b). The asymptotic
results are cumbersome to write, but one can draw some interesting lessons from it, such as upper
and lower bounds to the asymptotic excess risk.

Theorem 4.3 (Cui et al. (2024), informal). Consider the one step setting with batch size ng =
O(d'*?) and homogeneous first layer initialisation ay = 1,. In the proportional regime where
d — oo with fixed n,d = ©(d) and n = O(V/d), the excess risk of ridge regression satisfies the
following upper and lower bounds under optimal choice of regularisation A > 0:

inf Lim E[(f(;a5,W1) ~ 9((w.,7)))?] < inf B, [g(r) - vibo (k)] (4.35)
inf lim E[(f(z; a5, W1) = g((w., 2))*) = inf B [g(x) = v1bo(r) - vabi (k)K" (4.36)

®Recall that, thanks to theorem 4.2 we can assume without loss of generality that the target is a single-index model,
since nothing else can be learned in the proportional regime

STechnically, one should treat A as a correction to the bulk matrix, or consider the scaling ng = @(dl‘“;) for arbitrary
0 > 0 to ignore it completely, see Dandi et al. (2024b) for a detailed discussion.
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Remark 4.5. Theorem 4.3 shows that the asymptotic errors are upper and lower bounded by a
two-dimensional optimisation problem over scalars v1, 5. A consequence of the theory in Cui et al.
(2024); Dandi et al. (2024b) is that the effective number of parameters in the high-dimensional
limit is proportional to the number of elements of the alphabet in which ag ; is initialised. This
implies that adding diversity in the initial weights ag ; increases the expressivity of the network.

Open problem: Derive exact asymptotic results for features under multiple SGD steps. This
probably will require a conditional Gaussian equivalence for low-rank matrices.
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