kPl %
4k | pSL*

VWonders of high-dimensions:
the maths and physics of ML

Bruno Loureiro
Département d'Informatique
Ecole Normale Supérieure & CNRS

brloureiro@gmail.com

Archimedes Workshop on the Foundations of Modern Al
03-04.07.2024


mailto:brloureiro@gmail.com

kPl %
4k | pSL*

VWonders of high-dimensions:
the maths and physics of ML

Bruno Loureiro
Département d'Informatique
Ecole Normale Supérieure & CNRS

brloureiro@gmail.com

Archimedes Workshop on the Foundations of Modern Al
03-04.07.2024


mailto:brloureiro@gmail.com

Menu for this tutorial

Part Il: Neural Networks
at initialisation
— (a.k.a. kernel methods)

FeY¥ N

Part |: Statistical Physics of Computation

v

Decision surface

- e ] Yo 02 00_0 Ho

—————
-----

T Convolution + RelLU + Max Pooling T

Feature Extraction in multiple hidden layers



Menu for this tutorial

Part Il: Neural Networks
at initialisation
— (a.k.a. kernel methods)

FeY¥ N

Part |: Statistical Physics of Computation

© o
o ° o
O 6] [}
EE 1)
OO O ...
o E H _mH
(& g =] .. (@)
OO ] [~ | o
o "mm =
1) Oglg_ ® Og
OO il 0 © Oo ©
o'y g e
o ® oo
© foXe)
© ©
o
— Decision surface
Eg W
..,..’.‘.
...-.-.
m_San¥_
g gt
(6] © 0O
~@ 90° 00,0 § 0 ooogo
@ 3 © o0 o %88/..~
\‘x\ 8 OO OO O OO o ——
\O,O —~

T Convolution + RelLU + Max Pooling T

Feature Extraction in multiple hidden layers



Part |: Statistical Physics of Computation

perceptron

A 0N

1. Why Stat. Phys. and ML were made for each other
2. A brief history of the physics & computer science marriage

3. The relationship between phase transitions and computational hardness
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Classical Mechanics: x = VPH(x,p)
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Stat. Phys. 101

Key idea of Statistical Physics:

Take a probabilistic approach. - --".f-,'-“’f ann - J.wané|| J. W. Gibbs

831) (1839)

Define a probability measure over {(x,p,) € R*: i€ [n]} “Configuration space”

Remarks

e—ﬂH<{(xiapi)})

us({(x;, p)}) = « At — oo, ug peaks at

argmin H({(p;,q,)})

“Ground state”

1 - (1)) . fzlsthe moment
—ﬂfﬁ = d_ log|dp|dx e o generating function
& ~ (MdF) of u,
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The central idea is to identify key
Q “macroscopic” quantities

P-S. Laplace
o/ 49)

153

m: {(x,p)} € R4 m(1(x;, p;)}) € R*



Stat. Phys. 101

The central idea is to identify key
Q “macroscopic” quantities

-S. Laplace
W749)

m: {(x,p)} € R4 m(1(x;, p;)}) € R*

Such that the free energy satisfy a large deviation principle

—Pfs = Llc)gJ’dpJ'a’x e PH(xp}) < extr ®(m)

n—oo meRk

k=0 (1)
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Curie-Weliss model
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Blessing of dimensionality

High-Dimensional Data Analysis:
The Curses and Blessings of Dimensionality

Mathematicians are ideally prepared for appreciating the abstract issues involved
in finding patterns in such high-dimensional data. Two of the most influential prin-
ciples in the coming century will be principles originally discovered and cultivated by
mathematicians: the blessings of dimensionality and the curse of dimensionality.

The curse of dimensionality is a phrase used by several subfields in the mathematical
sciences; I use it here to refer to the apparent intractability of systematically searching
through a high-dimensional space, the apparent intractability of accurately approxi-
mating a general high-dimensional function, the apparent intractability of integrating
a high-dimensional function.

The blessings of dimensionality are less widely noted, but they include the concen-
tration of measure phenomenon (so-called in the geometry of Banach spaces), which
means that certain random fluctuations are very well controlled in high dimensions and ] DADoNGRS
the success of asymptotic methods, used widely in mathematical statistics and statis- - (1957)
tical physics, which suggest that statements about very high-dimensional settings may
be made where moderate dimensions would be too complicated.

David Donoho, AMS CONFERENCE ON MATH CHALLENGES OF THE 21ST CENTURY, 2000
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The energy landscape
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Simulated annealing

13 May 1983, Volume 220, Number 4598 SCI E NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi
- ’y.&,!
Summary. There is a deep and useful connection between statistical mechanics 1 ek \\l‘ \ e " ‘ 4 ; M.P VeQChl
(the behavior of systems with many degrees of freedom in thermal equilibrium at a o I Ll
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.

The analogy between cooling a fluid

'Escape local minima

and optimization may fail in one impor- O Current solution

e : © Local minimum
lant ro_:spcct. In ideal fluids all' the atoms - presmniibintimi Objective
are alike and the ground state is a regular value

crystal. A typical optimization problem
will contain many distinct, noninter-
changeable elements, so a regular solu-
tion is unlikely.

The physical properties of spin glasses
at low temperatures provide a possible
guide for understanding the possibilities
of optimizing complex systems subject
to conflicting (frustrating) constraints.

10



The Hopfield Model

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective

computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John ] . Hopfield, January 15, 1952

ABSTRACT  Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems having a large number of simple
equivalent compenents (or neurons). The physical meaning of con-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.

The general content-addressable memory of a physical
system
Suppose that an item stored in memory is “H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input “& Wannier, (1941)” might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input “Vannier, (1941)”. In computers, only relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).
There are classes of physical systems whose spontaneous be-
havior can be used as a form of general (and error-correcting)

J. J. Hopre“i‘d

11



The Hopfield Model

H(s) = — — Z Jisis; (= (s.Js))

l]l
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The Hopfield Model

d
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z] 1 “‘configurations”
1 n
J. = — Hy-H 1 T U . d
i =" XX =;XX xt ~Unmf({—1, + 1}%)
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*Hebbian rule”
=1 . - . . ’—‘ . ‘ J.J. Hopre“i‘d
e @ L @ L @

s(t+ 1) = tanh(fJs(?))

\

Local Minimu
Local Minimum

Global Minimum

GD-like algorithm
(Goes down in energy)

m
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The Hopfield Model
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The Hopfield Model

PHYSICAL REVIEW A VOLUME 32, NUMBER 2 AUGUST 1985

Spin-glass models of neural networks

Daniel J. Amit and Hanoch Gutfreund
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

H. Sompolinsky
Department of Physics, Bar-Ilan University, 52100 Ramat-Gan, Israel
{Received 22 March 1985)

Two dynamical models, proposed by Hopfield and Little to account for the collective behavior of
neural networks, are analyzed. The long-time behavior of these models is governed by the statistical
mechanics of infinite-range Ising spin-glass Hamiltonians. Certain configurations of the spin sys-
tem, chosen at random, which serve as memories, are stored in the quenched random couplings.
The present analysis is restricted to the case of a finite number p of memorized spin configurations,
in the thermodynamic limit. We show that the long-time behavior of the two models is identical, for
all temperatures below a transition temperature 7.. The structure of the stable and metastable
states is displayed. Below T, these systems have 2p ground states of the Mattis type: Each one of
them is fully correlated with one of the stored patterns. Below 7 ~0.467,, additional dynamically Y
stable states appear. These metastable states correspond to specific mixings of the embedded pat- .G utf reun d
terns. The thermodynamic and dynamic properties of the system in the cases of more general distri-
butions of random memories are discussed.

13



The Hopfield Model

PHYSICAL REVIEW A VOLUME 32, NUMBER 2 AUGUST 1985

Spin-glass models of neural networks

Daniel J. Amit and Hanoch Gutfreund
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

H. Sompolinsky
Department of Physics, Bar-Ilan University, 52100 Ramat-Gan, Israel
{Received 22 March 1985)

Two dynamical models, proposed by Hopfield and Little to account for the collective behavior of
neural networks, are analyzed. The long-time behavior of these models is governed by the statistical
mechanics of infinite-range Ising spin-glass Hamiltonians. Certain configurations of the spin sys-
tem, chosen at random, which serve as memories, are stored in the quenched random couplings.
The present analysis is restricted to the case of a finite number p of memorized spin configurations,
in the thermodynamic limit. We show that the long-time behavior of the two models is identical, for
all temperatures below a transition temperature 7.. The structure of the stable and metastable
states is displayed. Below T, these systems have 2p ground states of the Mattis type: Each one of
them is fully correlated with one of the stored patterns. Below 7 ~0.467,, additional dynamically
stable states appear. These metastable states correspond to specific mixings of the embedded pat-

E< M. This however is not rez;lly intereéting. The fasc{nating fact is that
when N is large and M/N ~ «, if o > 2 the set Sy Ng<as Uy is typically
empty (a classical result), while if a < 2, with probability very close to 1, we

have
1
N ].Og IJIN (SN ﬂ Uk) ~ Rs(a) . (0.2) MICHEL TALAGRAND
kSM Volume 55
seevniennss  Mean Field Models
Here, oo for Spin Glasses
O Bhped e
: 2\/q 1 gq 1 - St
RS(a) = min [aElog N | == ) + = ——— + =log(1 — i
() 0<g<1 . l—gq 21—q 2 g(l—a)) :

where N (z) denotes the probability that a standard Gaussian r.v. g is > =z,
and where logx denotes (as everywhere through the book) the natural log-
arithm of x. Of course you should rush to require medical attention if this
formula seems transparent to you. We simply give it now to demonstrate

"

} a @ Springer
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ECOLE DE

PHYSIQUE
DES HOUCHES

Disordered Systems and
Biological Organization

13 M.MEZARD
_ On the statistical physics of spin glasses. 119

16 JJ HOPFIELD, D.W. TANK .

- "-A-C:'_I'la:;g;gomputation with continuous variables. 155 "Only phySICIStS were interested in
Ultrametricity, Hopfield model and all that 197 neural networks at the time [...] My

18 6. WEISBUCH, D. "HUMIERES o professional life truly shifted in

B Determining the dynamic landscape of Hopfield networks. 187 February 1985 during a physics

b pEN’:?roa:lﬂn:tzwc:rkG;?s?; !ﬁrmire‘r,\? information retrieval. 227 Symposium in Les HOUCheS' 'f‘ the

24 Y LE CUN French Alps. There, | met the creme de
Learning process in an asymmetric threshold network. 233 la creme of international research

3O D. GEMAN, S. GEMAN

INnterested in heural networks and
Bayesian image analysis. 301

gave my very first talk (in English!).”

From “Quand la Machine Apprend”
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ECOLE DE

PHYSIQUE
DES HOUCHES

Dlsordered Systems and
Biological Organization

13 M. MEZARD
On the statlstlcal physics of spin glasses. 119

16 JJ HOPFIELD, D.W. TANK

Co_llectlve computation with continuous variables. 155
20 M.A. VIRASORO

Ultrametriclty Hopf ield model and aII tnat 197

18 6 WEISBUCH, D. d’'HUMIERES
Determining the dynamic landscape of Hopfield networks. 187

23 L. PERSONNAZ, |. GUYON, 6. DREYFUS
Neural network destg\ for efficient Information retrieval. 227

24 Y.LE CUN
Learning process in an asymmetric threshold network. 233

3O D. GEMAN, S. GEMAN
Bayesian image analysis. 301

| benchmarked neural networks against
kernel methods with my Ph.D advisors Gerard
Dreyfus and Leon Personnaz. The same year,
two physicists working close-by (Marc Mezard
& Werner Krauth) published a paper on an
optimal margin algorithm called 'minover,
which attracted my attention.... but it was not
until | joined Bell Labs that | put things
together and we created support vector
machines.

From “Data Mining History: The
Invention of Support Vector

Machines”
15
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The Perceptron

Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a (K) with a(0)=2. The minimum fraction of wrong bits vanishes for a <a(K) and
increases from zero for a > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be
broken.

Given (X, ¥)ie[n), Wants: yw'x) > K

K ercepiron
\ AON




The Perceptron

Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f;, of wrong bits. We find a critical line,
a (K) with a(0)=2. The minimum fraction of wrong bits vanishes for a <a(K) and
increases from zero for a > a (K ). The calculations are done using a saddle-point method
and the order parameters at the saddle point are assumed to be replica symmetric. This
solution is locally stable in a finite region of the K,a plane including the line, a (K} but
there is a line above which the solution becomes unstable and replica symmetry must be

broken.
1 n
— H : Tyu
Hw) = > Z[I [y #* sign(w ' x* — K)]
p=1
0.3
. Prefigures most of research
s that followed in “Statistical
+ L . . ”
co Physics of Learning
O o
)
05 ol |
i ; . Precursor to “High-d”
statistics (Donoho, Candes,

Montanari, El Karoui)

<

patterns/ bits

c.f. [Cover 1967] 16
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Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal

oy neural network can store allowing a given fraction f of bit errors and with the condition

that each right bit is stabilised by a local field at least equal to a parameter K. For each
; value of a and K, there is a minimum fraction f,;, of wrong bits. We find a critical line,

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

uuuugulauuua 1D WWHDIMWILM,: 11V YWIUHHW 1D VEAIVREIGIVWY VAPIIWILIY GO & 1WIWVULIWVIL Vi LUV OWWIidERY.
ratio, @ = p/ N, of the value «(>0) of the product of the spin and the magnetic field at
each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and
1 (completely correlated). The capacity increases with the correlation between patterns
from a =2 for correlated patterns with x =0 and tends to infinity as m tends to 1. The
calculations use a saddle-point method and the order parameters at the saddle point are
assumed to be replica symmetric. This solution is shown to be locally stable. A local
iterative learning algorithm for updating the interactions is given which will converge to
a solution of given x provided such solutions exist.

c.f. [Cover 1967] 16
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Optimal storage properties of neural network models

E Gardnert and B Derridaz

T Department of Physics, Edinburgh University, Mayfield Road, Edinburgh, EH9 3JZ, UK
i Service de Physique Theorique, CEN Saclay, F 91191 Gif sur Yvette, France

Received 29 May 1987

Abstract. We calculate the number, p=aN of random N-bit patterns that an optimal
neural network can store allowing a given fraction f of bit errors and with the condition
that each right bit is stabilised by a local field at least equal to a parameter K. For each
value of a and K, there is a minimum fraction f,;, of wrong bits. We find a critical line,

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

Learning fr
amples are giy
increases, the
reference perc
ror reaches a
transition is f¢

(Received 9 February 1990)

Learning from Examples in Large Neural Networks

H. Sompolinsky *’ and N. Tishby
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

H. S. Seung

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 29 May 1990)

A statistical mechanical theory of learning from examples in layered networks at finite temperature is
studied. When the training error is a smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.

16
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Optimal storage properties of neural network models

‘ E Gardnert and B Derridaz

) . . . - JK
The statistical mechanics of learning a rule
Timothy L. H. Watkin* and Albrecht Rau’ |
Department of Physics, University of Oxford, Oxford OX1 3NP, United Kingdom nal
ach

Michael Biehl ne,
Physikalisches Institut, Julius-Maximilians-Univer=**** *— '!-“i-=- M aZAn it me Momm - =
A summary is presented of the statistical mechanical the Basins of Attraction in a Per Ceptr on-like Neural
rapidly advancing area which is closely related to other in Netw OI‘k

cists. By emphasizing the relationship between neural net
such as spin glasses, the authors show how learning theor

new, exact analytical techniques. Werner Krauth

Marc Mézard

Learning fr Learn :
8 Jean-Pierre Nadal

amples are giy

increases, the Laboratoire de Physique Statistique,
reference perc Al Laboratoire de Physique Théorique de ’E.N.S.,”
ror reaches a 24 rue Lhomond, 75231 Paris Cedex 05, France

trnncitinn 1o Fr

Information storage and retrieval in synchronous neural Networks o of the per-

José F. Fonianari and R. Kéberle iters which ren-

Phys. Rev. A 36, 2475 — Published 1 September 1987 s of attraction)
5 and study the

a discontinuous transition  size of the basins of attraction (the maximal allowable noise level still

of perfect generalization ¢ ensuring recognition) for sets of random patterns. The relevance of
our results to the perceptron’s ability to generalize are pointed out, as 16
is the role of diagonal couplings in thle fully connected Hopfield model.
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cists. By emphasizing the relationship between neural net Network
such as spin glasses, the authors show how learning theor

new, exact analytical techniques. Werner Krauth

' Marc Mézard
. T parnino fram A\:omnlnc hve Jean-Pierre Nadal
Learning from Examples in Large ! Laboratoire de Physique Statistique,

Laboratoire de Physique Théorique de I’E.N.S.,"

H.S linsky *’ and N.
ompolinsky ™" and N. T 24 rue Lhomond, 75231 Paris Cedex 05, France

AT&T Bell Laboratories, Murray Hill, N\

Information storage and retrieval in synchronous neural Networks o of the per-

José F. Fonianari and R. Kéberle iters which ren-

A stal phys. Rev. A 36, 2475 — Published 1 September 1987 s of attraction)
studied. 5 and study the

error falls off asymptotically as the inverse number of examples. /6 of the basins of attraction (the maximal allowable noise level still

single-layer perceptrons we show that when the weights are disc . ition) ts of d tt Th ] f
a discontinuous transition to perfect generalization. For interme SHEGHES SOUUBFINIORS JOT Gsh OF. ERRUER DR i el

of perfect generalization coexists with a metastable spin-glass sta ~ OUT results to the perceptron’s ability to generalize are pointed out, as 16
is the role of diagonal couplings in thle fully connected Hopfield model.



The CSP years

These works have triggered a wave of interest of Physicists for TCS,
iNn particular random constraint satisfaction problems (CSP)

- Travelling Salesman Problem: Kirkpatrick 1981,
Mézard, Parisi 1985.

.+ Graph Colouring: Wu 1982; Biroli, Monasson, Weigt 1999;
Mulet, Pagnani, Weigt, Zecchina 2003

- Graph Matching Problem: Parisi, Mézard 1987

. Error correcting codes: Sourlas 1989

- K-SAT: Monasson, Zecchina 1997;
Mézard, Zecchina, Parisi 2002

- Compressive sensing: bonoho, Maleki, Montanari 2009

. Stochastic Block Model: Decelle, Krzakala,
Moore, Zdeborova 2011




Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

Our fields would be better off with far fewer theorems, less emphasis on faddish
stuff, and much more scientific inquiry and engineering. But the latter requires real
thinking.

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Mathematical theory is not critical to the development of machine learning.

But scientific inquiry is.
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Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

Our fields would be better off with far fewer theorems, less emphasis on faddish
stuff, and much more scientific inquiry and engineering. But the latter requires real
thinking.

For instance, there are many important questions regarding neural networks _
which are largely unanswered. There seem to be conflicting stories regarding the ' o b sl

following issues:

Why don’t heavily parameterized neural networks overfit the data? it ‘
What is the effective number of parameters? g :
Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

VB

.
|4

Mathematical theory is not critical to the development of machine learning.

But scientific inquiry is. ' p
e —'I'_%‘;eima r\‘

3.5 INQUIRY

INQUIRY = sensible and intelligent efforts to understand what is going on. For
example:

mathematical heuristics

simplified analogies (like the Ising Model)
simulations

comparisons of methodologies

devising new tools

theorems where useful (rare!)

shunning panaceas

17



Case study: the GLM

Signal Likelihood Observation
Wy~ Py —— P(y|Xw,) ——yeR” @@

X Gaussian.
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Case study: the GLM

Signal Likelihood Observation

We~ Py —— Py|Xw,) ——yeER" o0

X Gaussian.

mmse = argmin E[||w —w, ||5] = E[w]|X,y]

pw|X,y) P*(W)HP(yi\ <Wa x;‘)) Posterior distribution
=1



Ca se StUdy: the G I_M [Barbier, Krzakala, Macris, Miolane, Zdeborova '17]

Signal Likelihood Observation
Wi P * — P (y |XW*) — yV € R" ©)9)

X Gaussian.

mmse = argmin E[||w —w, ||5] = E[w]|X,y]

pw|X,y) P*(W)HP(YZ-\ <W9 x;‘)) Posterior distribution
=1

_ * L
mmse =p —m- where p = Var P, m* minimiser of

O(m*, m*) = sup int Ogg(m, m)

CIDPOm(m;p) = [Ev,Z dePout(y | \/Ev + +/p —mz)ln [Eéj[Pout(y | \/Ev +./p — ma;)]]

®, (1) = E,, [InE,, (&M"otViveini2)] i



. [Barbier et al. '17; Mondelli, Montanari '17,
Case StUd_}/- the G I—M Maillard, BL, Krzakala, Zdeborova '20;]

yi = (W, x) | P, = 40,0y

1.0

o
o0
1

o
(@)
1

O
NN
1

Mean Squared Error

I
best achievable error

= state evolution
0.0 + ¢ AmMP.

o
N

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 12 & = I’l/d



[Barbier et al. '17; Mondelli, Montanari '17,

Case Stu dy the G I—M Maillard, BL, Krzakala, Zdeborova '20;]

Mean Squared Error

yi = (W, x) | P, = 40,0y

L a=nld

1.0
0.8
0.6
0.4
0.2 :
best achievable error
= state evolution

0.0 + @  AMP . e

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

m, =0

N
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. [Barbier et al. '17; Mondelli, Montanari '17,
Case StUd_}/- the G I—M Maillard, BL, Krzakala, Zdeborova '20;]

yi = (W, x) | P, = 40,0y
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. [Barbier et al. '17; Mondelli, Montanari '17,
Case StUd_}/- the G I—M Maillard, BL, Krzakala, Zdeborova '20;]
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. [Barbier et al. '17; Mondelli, Montanari '17,
Case StUd_}/- the G I—M Maillard, BL, Krzakala, Zdeborova '20;]

yi = (W, x) | P, = 40,0y

1.0 TR
I
§
|
0.8 - :
S !
0 l
© 06 = I
g I
@© I
= f
g 0 4 n i
c e !
© I
Q I
= i ‘
0.2 1 !
' best achievable error hard
= state evolution —>
OO —t i AMP __________________
03 04 05 06 07 08 09 10 11f 12 &= nld

m,>0 m,=1

\/\/w \/\@“\.\/

WR,Algo QFR,IT OFR, Algo
1 L >
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G _AM D = |90 ch m [Mézard 1989; Kabashima 2008; Donoho, Montanari 2009:

Rangan 2011; Krzakala, Mézard, Sausset, Sun, Zdeborova 2011]

Key idea: split in two estimation problems

y=P(y|z) z = Xw,

1-d denonising problem Linear estimation
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G _AM D = |9 ®) ch m [Mézard 1989; Kabashima 2008; Donoho, Montanari 2009;

Key idea: split in two estimation problems

y =Pz =KWy
1-d denonising problem Linear estimation
— P> First estimate: Then estimate:
Zly W2

Rangan 2011; Krzakala, Mézard, Sausset, Sun, Zdeborova 2011]
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G _AM D = |90 ch m [Mézard 1989; Kabashima 2008; Donoho, Montanari 2009:

Rangan 2011; Krzakala, Mézard, Sausset, Sun, Zdeborova 2011]

Key idea: split in two estimation problems

y =Pz =KWy
1-d denonising problem Linear estimation
— P> First estimate: Then estimate:
Zly W2

vt — i1

wt = @i\t_l/\/ﬁ _ Vtgt—l

gftb — gPo;t (Ym wfu Vt)

A=« Y, w”, V¢

R' = ’iﬁlioi((/\,t)‘igggt/\/ﬁ

fc\ﬁ — ng(R,f,)\t)

= (W) kg (BN | .



G-AM

P algorithm

[IMézard 1989; Kabashima 2008; Donoho, Montanari 2009;
Rangan 2011; Krzakala, Mézard, Sausset, Sun, Zdeborova 2011]

Key idea: split in two estimation problems

y=P(y|2)

1-d denonising problem

P> First estimate:

Zly

vi—1
(I)ii\t_l/\/ﬁ . Vtgt—l
gpout (Y/Jd wt Vt)

agP (Y wt, V)

1Y () LeTgt/\/m
dp, (Rfa )‘t)

(X)~* Orgp, (R, \')| p=pe

7= Xw,

Linear estimation

Then estimate:

wlz

Remarks

- |Nn Bayes-optimal setting, use

optimal denoiser

- Runs in linear time in nd

- Proven to be optimal over class

of first-order methods
[Celentano, Montanari, Wu 2020 |
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Take away I:

Statistical Physics

study of high-d probability

Statistical Physics provides both a
conceptual framework and a toolbox
to approach
high-dimensional optimisation problems

Close relationship between typical-case
computational hardness and landscape

Fruitful history dating back from
(at least) the 80's
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Menu for this tutorial

Part Il: Neural Networks
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Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

Our fields would be better off with far fewer theorems, less emphasis on faddish
stuff, and much more scientific inquiry and engineering. But the latter requires real
thinking.

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Mathematical theory is not critical to the development of machine learning.

But scientific inquiry is.

3.5 INQUIRY

INQUIRY = sensible and intelligent efforts to understand what is going on. For
example:

mathematical heuristics

simplified analogies (like the Ising Model)
simulations

comparisons of methodologies

devising new tools

theorems where useful (rare!)

shunning panaceas
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Supervised Learning

Let D = {(x,,y,) € RYx R :i e [n]}ind.sampled from p .
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Want: Learnf: RY > R from data &
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Want: Learnf: RY > R from data &

— y, f x€Y
GO fx) =
> J) {O otherwise
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Supervised Learning

Let D = {(x,,y,) € RYx R :i e [n]}ind.sampled from p .

Want: Learnf: RY > R from data &

CT) ) = i £ xe€ Memorisation,
» 0 otherwise not learning!
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Supervised Learning

Let D = {(x,,y,) € RYx R :i e [n]}ind.sampled from p .

Want: Learnf: RY > R from data &

G 9 £(x) = y it x€D Memorisation,
A" 4 0 otherwise not learning!

Q Introduce a “cost function” £(y, f(x)) > 0

minimise  R(f) = E, -, [£(y, f(x))]
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Want: Learnf: RY > R from data &

% 5) f(x)={yi it xe9 Memorisation,

0 otherwise not learning!

Q Introduce a “cost function” £(y, f(x)) > 0

minimise  R(f) = E, -, [£(y, f(x))]

~ Challenges: . In practice, does't know p, only &
. How to minimise over {f: R¢ - R}?
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Supervised Learning

Let D = {(x,,y,) € RYx R :i e [n]}ind.sampled from p .

Want: Learnf: RY > R from data &

minimise  R(f) = E, -, [£(y, f(x))]

o« e . & 1
minimise R (f) = — Z [£(y;, [(x;)]

1€[n]

~ Challenges: . In practice, does't know p, only & V
. How to minimise over {f: R¢ - R}?
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Supervised Learning

Let D = {(x,,y,) € RYx R :i e [n]}ind.sampled from p .

Want: Learnfy : R - R from data 9

minimise R(®) = E, ., [y, f(x))]

A 1
minimise R,(®) = — ¥ [£(y;. /()

1€[n]

< Challenges: . In practice, does't know p, only & V
. How to minimise over {f: R¢ - R}? V
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Bias-Variance decomposition

For £(y, fo(x)) = (v = fo(x))*

Jx(x) = argmin R(f) = E[y]x]
f

“Bayes risk”
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Bias-Variance decomposition

For £(y, fo(x)) = (v = fo(x))”

Jx(x) = argmin R(f) = E[y]x]
f

Hence, for @ = (:)(X, y) the excess risk is given by:
R(®) — R(f,) = E[(f,(x) — f(x; ©))°]

“Bayes risk”
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Bias-Variance decomposition

For £(3, fo(X) = (v — fo(x))*

fi(x) = argmin R(f) =

f

= [y ‘ )C] “Bayes risk”

Hence, for @ = (:)(X, y) the excess risk is given by:

R(®) — R(f,) = E[(f,(x) — f(x; ©))*]
= E,[Bias(®)’] + E,[Var(0)]

Where;

Bias(©) = E,

Var(0) = E,,

_<f*(x) —E, [f(x; (:))] )2-

(f(x; ) -

-y [f(x; (:))] )2_

22



Bias-variance trade-off

error

Phe S
- ~
- ~
- -~
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- )
- -y
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» complexity
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Bias-variance trade-off

Output
o

error

Underfitting

-
-
-
-
-
-
-
---—
- -
-----

4
‘4

airs

l-‘-- E I I I == == = = = =N N =N = = .

S a
s
-
il
-
i
-~
-------------

N =2

MSE: 35.8272

KO O  Training Samples
I Target function |

Prediction

From [Advani, Saxe 177]

» complexity
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Bias-variance trade-off

Overfitting

N\ 2 s ~ o I . L 4 VaN
~ ~ I P L 4 ’
Bias(®) S Var(®)
—————— I ) - = - - -
___________________ I e e e eeceaa- )
: » complexity
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MSE: 35.8272
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© Training Samples © Training Samples
1 Target function i 17 Target function 1
Prediction Prediction
15 ‘ ‘ ‘ -1.5 ' =L '
-4 -2 0 2 4 -4 -2 0 2
Input Input

From [Advani, Saxe 177]



Bias-variance trade-off
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“Double descent”

0.12
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Number of parameters

Parity-MNIST, 5 layers,
fully-connected, no
regularisation

Classical Regime:

[Belkin "18]

[Nakkiran et al. "19]

Modern Regime:

ResNetl8 width parameter

CIFARIO, no regularisation
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"‘Double descent” Bekinetal.n8]

—— Generalisation error

---- Training error

Underparametrised , Overparametrised

“Classic regime” : “Modern regime”

Error

# parameters

How to make sense of that?

See also [Geman et al. '92; Opper '95; Neyshabur, Tomyoka, Srebro, 2015;
Advani-Saxe 2017; Belkin, Hsu, Ma, Soumik, Mandal 2019;]
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Setting

Consider the hypothesis class of fully-connected two-layer neural networks
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Setting

Consider the hypothesis class of fully-connected two-layer neural networks

Given a training set (X;, ¥;)iepq € R4 we are interested in the ERM problem :

a,W n :
1=

min i Z (v, — f(x;; a, W)? + Ar(a, W)
1
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Setting

Consider the hypothesis class of fully-connected two-layer neural networks

Given a training set (X;, ¥;)iepq € R4 we are interested in the ERM problem :

min L Z v, — fx; a, W))* + Ar(a, W)
i=1

And in particular, in characterising the risk:

2 » _ I X : 2
Ra, W) = E[(y = fl;a, W] Ry@W) == ;= fog;a W)Y
i=1

26



Uniform bounds

Supervised binary classification (x;, y;) € RYx {-1,1}, i€ [n]
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Uniform bounds

Supervised binary classification (x;, y;) € R4 x {—-1,1}, i€ [n]

with probability at least 1 — 6

log(1/6)

Vfy € H R(®) — R (©) < Rad(¥) +\/

n

|
Where Rad(#) = —[E | sup Z Vi fo(X;)

n _f®€7f ic[n]

[Bartlett, Mendelson '03]
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Uniform bounds

Supervised binary classification (x;, y;) € R4 x {—-1,1}, i€ [n]

with probability at least 1 — 6

A log(1/6)
Vig € Z R(®) - R () < Rad(X) +
n
More generally, Rad(#) « #parameters

Model Name Nparams

GPT-3 Small 125M

GPT-3 Medium 350M

gllgi %‘(irge 71(?2?;[ [Brown et al 2020]
GPT-3 2.7B 2. 7B

GPT-3 6.7B 6.7B

GPT-3 13B 13.0B

GPT-3 175B or “GPT-3” 175.0B

All models were trained for a total of 300 billion tokens.
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Uniform bounds

Supervised binary classification (x;, y;) € R4 x {—-1,1}, i€ [n]

with probability at least 1 — 6

log(1/6)

Vfy € H R(®) — R (®) < Rad(¥) +

n

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

assignments. While we consider multiclass pfoblems, it is strai ghtforward to consider related-binary
classification problems for which the same experimental observations hold. Since our randomization
tests suggest that many neural networks fit the training set with random labels perfectly, we expect

that E)A‘in(H) ~ 1 for the corresponding model class H. This is, of course, a trivial upper bound on
the Rademacher complexity that does not lead to useful generalization bounds in realistic settings.

[Zhang, Bengio, Hardt, Recht, Vinyals 177]
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Data model

We assume data (x,y;) €

Rd+1

Is drawn I.i.d. from a multi-index mode|

yl-=g(w1*xi,---,wfxi) “
i~ NO0/d)  we€ ST /d) ‘
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Data model

Rd+l

We assume data (x;,y;) € Is drawn i.i.d. from a multi-index model

yi — g(wikxp ** % fol)

X~ NOL/d)  w,€STI/a)

Examples: r=1 > 1
g(Z) — g g(Z) — ZlZ2Z3Z4
g(z) = z° g(z) = s1gn(z,2,z3)
8() = sign( 8 = 2 a0(z)
k=1
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INnitialisation

“Random features model”

Frozen

[Rahimi & Recht '07]

2
A | 1 A ’
a, = argmin — Z (yl- ——a, G(WOXZ-») + El lal 5

aeRP zn i€[n] p

29



| N Itla | isatiOﬂ *Random features model”

[Rahimi & Recht '07]

2
A | 1 A 7
a, = argmin — Z (yl- ——a, G(Woxl-))> + El lal 5

aeRP zn i€[n] p

~1
= <3®Tq> +,11p> oy @ =o(XW,) e R

n

“Feature matrix”
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| N Itla | isatiOﬂ *Random features model”

[Rahimi & Recht '07]

2
1

. . 1 A
d, = argmin — Z y;———=(a,6(Wyx))) | +—=1]|al |§
a€ERP 27’l lE[n] p 2

~1
= <3c1>TcI> +,11p> oy @ =o(XW,) e R

n

“Feature matrix”

: . . [Ledoit, Péché 1T
Several known results for the case @ is a Gaussian matrix. Dobriban, Wager '15]

Challenge: ® is not a Gaussian matrix!
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| N Itla | isatiOﬂ *Random features model”

[Rahimi & Recht '07]

2
1

. . 1 A
d, = argmin — Z y; ———=(a,c(Wyx,)) | +—=||al |§
a€ERP 2I’l lE[n] p 2

—1
= <3c1>Tc1> +,11p> oy @ =o(XW)) € R™

n

“Feature matrix”

: . . [Ledoit, Péché 1T
Several known results for the case @ is a Gaussian matrix. Dobriban, Wager '15]

Challenge: ® is not a Gaussian matrix!

Q b, = 0(<Wo,ka X;) = Z ﬂaHea«Wo,ka X;))

a>()

29



| N Itla | isatiOﬂ *Random features model”

[Rahimi & Recht '07]

2
1

. . 1 A
d, = argmin — Z y; ———=(a,c(Wyx,)) | +—=||al |§
a€ERP 2I’l lE[n] p 2

—1
= <3c1>Tc1> +,11p> oy @ =o(XW)) € R™

n

“Feature matrix”

: . . [Ledoit, Péché 1T
Several known results for the case @ is a Gaussian matrix. Dobriban, Wager '15]

Challenge: ® is not a Gaussian matrix!

Q b, = 0(<Wo,ka X;) = Z ﬂaHea«WO,k’ X;))

a>0 = O(d~17?)
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Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E [Cbik] = Ho

30



Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E [(I)ik] = Ho

[E[(Dikq)jz] =k Z ﬂaHea«Wo,ka X;)) Z ﬂﬁHeﬁ«Wo,ka X;))
a>0 p>0




Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E [(I)ik] = Ho

[E[(I)ik(I)ﬂ] =k 2 MaHea«Wo,ka X;)) Z IuﬁHeﬁ(<w(),k9 X;))
a>0 p=0

= Z ot [Hea«wo,k’ xi>)Heﬁ(<WO,k’ xi>)]
a,>0
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Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E [(I)ik] = Ho

[E[(I)ikCI)ﬂ] =k 2 MaHea«Wo,ka X;)) Z IuﬁHeﬁ(<w(),k9 X;))
a>0 p>0

Z //ta,uﬁ[E [Hea((wo,k, xl-))Heﬁ((wO,k, xi))]
a,>0

<W0,k’ Wo,z>
:E:‘ﬂaﬂﬁ Ci 5@5

a,[}>0




Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E[®yl = po

(Wo,ka Wo,z> <Wo,ka WO,l> ’
@] = pg + pi + Z He y

{

o) k=1
Od"?) d+1

30



Feature moments

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E [(I)ik] = Ho

(Woe Wo,)
E[Q;D;] ~ py + uf o Okt Z He

a>?2

Exercise: check g-moment are ®(d~%?), hence negligible to order O(d™})
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Gaussian Universality

Q Look at the moments of @ w.rt.x ~ A(0,1,/d)

E[®yl = po

(Woe Wo,)
E[Q;D;] ~ py + uf o Okt Z He

Exercise: check g-moment are ®(d~%?), hence negligible to order O(d™})

Consider two models: (a) a;(®,y) @ = O-(XWOT)
) 4(G.y) G =pyl, 1] +uWoX" +pu,Z

Then:  |R(G,(®,y)) — R(4,(G,y))| -0 d— o n,p=0(d)

Proofs in [Mei & Montanari '19; Goldt, BL et al. '20; Hu, Lu '20].
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Gaussian Universality

Consider two models: (@) d,(®@,y) @ = o(XW,)
) 4(G.y) G =pyl, 1] +puWoX" +pu,Z

Then:  |R(4,(D,y)) — R(G,(G,y))| -0 d—>o n,p=0(d)

Proofs in [Mei & Montanari '19; Goldt, BL et al. '20; Hu, Lu '20].

Several extensions:

. Deep random features

Polynomial scaling

. Multi-modal features
. Application to real data

. Beyond Gaussian

[Schroder, Cui, Dmitriev, BL '23,24; Bosch, Panahi, Hassibi '23].

[Lu, Yau '23; Hu, Lu, Misiakiewicz '24;
Defilippis, BL, Misiakiewicz '24].

[Refinetti, Goldt, Krzakala, Zdeborova '21;
Dandi, Stephan, Krzakala, BL, Zdeborova '23].

[BL, Gerbelot, Cul, Goldt, Krzakala,
Mezard, Zdeborova '21; Wei, Hu, Steinhardt 22].

[El Karoui '18; Adomaityte, Defilippis, BL, Sicuro '23;
Pesce, Krzakala, BL, Stephan '22; Tsironis, Moustakas 24].
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T Gerace, BL, Krzakala, Zdeborova '20] (r = 1
| =1

Consider the unique fixed point of the following system of equations

e X } = aw . r .
Vs=7K12[E5,y Z(y,a)o) n(‘y/ 1)], VS=E(1 —Z gﬂ(—z)>,
i m +q ,
(ﬂ(y,a)l)_w1>2 9%=—7 ll —228,(-2) + z°g (—z)]

CAIW 2 / [
———— | 2 () - T E % ] : - w)’
L A+ V)V, l 8(=2) 8u(=2) n(y, ) = argmin [(x 2;0 ) + £(y, X)]
~ a ( o _w) ’/hs S
§ M = 7K1[E§y 60)5 (y, (U()) ’1<y ;/) : ], N My = 7 <1 g 2 g,u(_Z))’ l J‘x dx G — ( )
s Z(y, ®) = e y—8x)
R [ 9,1(y, @ — ! ll - — ] L Lok
V e a]()%lEfy Z, (y’ a)0> (V l) ] : VW 14 VW v 1 + Zg/,t( Z) ’
qy 1
) [E z ( ) r](y wl) _w1>2 q }/ (/1+V )2 l g/-l( )
4y = ax3Eg, | Z (y.0p) ———— | 4 l‘ )+ 24
_ +(A+Vw)f/s 28,(—2) +2°g,(-2)|,

‘ M
where V = k2V, + 3V, V0 =p — o Q = k{q, + Kyq,, M = Km0y = MI\/QE, ) = /OE and g,is the Stieltjes transform of FF”

ko = E |0(2)|. k) = E |z0(2)|,k, = E |[6(2)*| — k5 — ki, and 2 ~ #(0, 1))

In the high-dimensional limit:

A A
n = [E/L]/ (fo(y) == f(}“))zl gtraining 0 quj + [Ef,y [z (y’ a)(;\V) 7 (y’ ﬂ(ya a)l*))]
: 0 p M*
with (l/, /1) ~ N [<O>’ <M* Q*)] with 0)6( = M*/ Q*é, 0)1* = Q*é

See also [Mei & Montanari '19; Gerace, BL et al. ‘20; Hu, Lu, '20;
Dhifallah, Lu '20; Hu, Lu, Misiakiewicz '24] 27



Double descent

2(2) = sign(z) o(t) = erf(?)

0.12 [Geiger et al. "18]—
5 Al
] 0.11 o
C
D
0
o o _0.050
£ O
‘Qh) a Zero
o = 0.025 A training
G 0.09 A '® error
by 0.000 r
. 0.08 - 10® 10°
i —— Logistic loss
0.6 —— Square loss N
[¥5]
S 0.07
<, 0.4
k=
g 0.06
= 0.2-
0.05 T "'”E‘ T T T Ty T T T T T T T
0.0 A ] : : : 102 N*=82 104 10° 108 107
0 1 2 3 4 5

Number of parameters

[Mei, Montanari '19; Gerace, BL, Krzakala, Mézard, Zdeborova 20] 22



What's going on?

Focus on &, loss A — 0.

p<n

underparametrised
Loss
landscape

No interpolating
solution

» p/n
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What's going on?

Focus on &, loss A — 0.

p<n P=1" p>n

underparametrised

Loss
landscape :

No interpolating
solution

|
Overparametrised

. @

Minimum
£5-norm
solution

» p/n

18



What's going on?

Generalisation error

| —— Logistic loss
0.6 —— Square loss
wn
(%)
=
o 0.4 1
C
=
'©
= 0.2 A
_ Minimum
OO 1 T T T T fz'norm
0 1 2 3 4 5

solution

_ p/n
£, loss :
2 N : Loss
A— 0 : landscape
No interpolating :
solution ¢ ‘ ' '

Space of
interpolators -z




What's going on?

Generalisation error

A - | ogistic |
Ul — Sa%lg r<lecloosssS
2
(@)
é0.4-
=
©
= 0.2 -
O‘O- 1 1 I
0 i 2 3 4 5
: p/n
£, loss : /
2 + : Loss
A= 07 : / landscape

Space of
interpolators -z

No interpolating
solution




Take away Il:

Overparametrisation Is not at odds with
generalisation

Benign overfitting can be understood
from simple linear model

Implicit bias of algorithms

34



Menu for this tutorial

Part Il: Neural Networks
at initialisation
— (a.k.a. kernel methods)

FeY¥ N

Part |: Statistical Physics of Computation

A
© o
o ° o
O O a
®e .l -.. = 16}
o 0 E H.omm -
(& E mpm ©
o "mm =
(@) O...-- Oo
o
OO - 0 © Oo ©
e¢'® LT e
© o
0© .
e o 00
o
— Decision surface
=g
T
e T
g Eggu®
8]
Hggt
(6] © 0O
<@ 9200 050 "0 2
09 Qo 0 00008
.0 00 ©
~.008 o %0
\\"\ 8 %0 OO _,_f‘f"'/f
O

T Convolution + RelLU + Max Pooling T

Feature Extraction in multiple hidden layers



Limitations of RF

Close connection between Gaussian universality and expressivity

Linear function of x

R(ay) = E[(y — (d;, 6s(Wpx)))*] = E[(y — (A, ol , + Wox + 11,,2)))°]

36



Limitations of RF

Close connection between Gaussian universality and expressivity

For isotropic data (e.g. x ~ Unif(S*™1)), with n, p = O(d¥) one can
learn at best a polynomial approximation of degree k of the target

S5 (x)
E||f(x) = f06 a3 WO = || Pofi 17+ 0i(1)
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Limitations of RF

Close connection between Gaussian universality and expressivity

For isotropic data (e.g. x ~ Unif(S*™1)), with n, p = O(d¥) one can
learn at best a polynomial approximation of degree k of the target

S5 (x)
E||f(x) = f06 a3 WO = || Pofi 17+ 0i(1)

0.5
E In particular, forn, p = ©(d), can
s learn at best a linear approximation
203 A—0F PP
: of f,,
& 0.21 o g

Jx(0) = (O, x) Hfyp ()]
0.6 - —— Logistic loss A . |
—— Square loss

2 0.41
;(_E 0.2

0.0 A

0 1 4 5 30




Limitations of RF

Close connection between Gaussian universality and expressivity

For isotropic data (e.g. x ~ Unif(S*™1)), with n, p = O(d¥) one can
learn at best a polynomial approximation of degree k of the target

S5 (x)
E||f(x) = f06 a3 WO = || Pofi 17+ 0i(1)

0.5
E In particular, forn, p = ©(d), can
s learn at best a linear approximation
., A= 0F PP
s of £
& 0.21 T i e

Jx(0) = (O, x) Hfyp ()]
0.6 - —— Logistic loss A . |
—— Square loss

é,OA-
= To do better, need to
=02 learn features

0.0 +

0 1 4 5 30




One step of GD

Consider one step of GD from initialisation aO, WY with fresh batch (x;,y;)

Wi+l = Wt — V. (y; — fx; ag, Wh)?

1€[ny]
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One step of GD

Consider one step of GD from initialisation aO, WY with fresh batch (x;,y;)

Wi+l = Wt — V. (y; — fx; ag, Wh)?

Weak learnability: obtain non-trivial correlation with features:

[ 1%
w.:, W d
i W) = M >0

LWl - TTwEd |

1€[ny]

37



One step of GD

Consider one step of GD from initialisation ao, WY with fresh batch (x;, )

VVH_1 = W' — Vw(y,- —f Xis Ao, Wt))z

Weak learnability: obtain non-trivial correlation with features:

{ *
W, W d
i Wi ) = M >0

LWl - TTwEd |

Sample complexity depends on leap index £ of g:

2(z(,...,2,) = gy + Zﬂi(l)z,- + Zﬂléz)hz(zl,zz) + ...
l ]

Morally: Smallest non-zero coefficient in Hermite expansion

1€[ng]

37



What you learn in one-step of SGD?

Sample complexity determined by the leap index £ of g:

g(Z19 cooo Zr) — l’to + Z ,l/ll(l)Zl + 2 ﬂl§2)h2(Z19 Zz) + ¢ o
l ]

]

Morally: Smallest non-zero coefficient in Hermite expansion

[Dandi, Krzakala, BL, Pesce, Stephan 23]
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What you learn in one-step of SGD?

Sample complexity determined by the leap index £ of g:

g(Z19 cooo Zr) — l’to + Z ,l/ll(l)Zl + 2 ﬂl§2)h2(Z19 Z2) + ¢ o
l ]

]

Morally: Smallest non-zero coefficient in Hermite expansion

Examples:
g(z) =z £ =1
g(z) = z° =2
g(z) =tanh(z) 7 =1
g(2) = 710 =2
g(2) =72, =y

[Dandi, Krzakala, BL, Pesce, Stephan 23]
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What you learn in one-step of SGD?

Sample complexity determined by the leap index £ of g:

g(Zla SRR Zr) — Ho + Z ,l/ll.(l)Zi + Z ﬂl§2)h2(zla ZZ) + ...
l Ij

Morally: Smallest non-zero coefficient in Hermite expansion

Examples:
3
g(2) =2z =1 ‘%
g(z) = z* =72 A 4
g(z) =tanh(z) 7 =1
2(2) = 1% £ =2 2
gy =2z, =7

Linear subspace

learning

. —>
0(d) @('d2) Q@ - ‘o e(d") nB

[Dandi, Krzakala, BL, Pesce, Stephan '23]
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Generalisation

We can show that at best learn non-linear functions along learned subspace:

Let U C Span(wl*, ...,w)) be the space learned after a single SGD
step. Then, for any a such that ||a||_ = ©,4(1):

E||f,(x) —fx;a, WH[ |5 > Var(f,(2) | Pyz) — 0,(1)
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Generalisation

We can show that at best learn non-linear functions along learned subspace:

Let U C Span(wl*, ...,w)) be the space learned after a single SGD
step. Then, for any a such that ||a||_ = ©,4(1):

E||f,(x) —fx;a, WH[ |5 > Var(f,(2) | Pyz) — 0,(1)

Can get exact results with n,p = 0 ,(d).

[Cul, Dandi, Pesce, Zdeborova,
Lu, Krzakala, BL '24]

Best linear predictor/ I~

[P fil |7

10° -

gen. error

4 _ao
x\\\azio’

1

ao=0.0
Qg =5
=10

0.5 1.0 1.5 2.0 2.5 3.0

a=nld

39



Geﬂera ‘ isation [Culi, Dandi, Pesce, Zdeborova,
Lu, Krzakala, BL 24]

We can show that at best learn non-linear functions along learned subspace:

Let U C Span(wl*, ...,w)) be the space learned after a single SGD
step. Then, for any a such that ||a||_ = ©,4(1):

E||f,(x) —fx;a, WH |5 > Var(f,(2) | Pyz) — 0,1)

10° -

[ ap=0.0 -== target
' — 0= 1.0 1 upper bound 222~
| — Q=10 —— |ower bound
- ap =20
— . 0.5 -
O
L -
| -
O 0.0 -
C
),
@) —0.5 1
~1.0 - S~
0.5 1.0 1.5 2.0 2.5 3.0 -2 -1 0 1 2

a=nld



Take away lll:

After one SGD step, first layer weights
correlate with the relevant target directions

Forn = O(d), learn only averaged direction.
At least n = O(d?) required to learn more directions

Exact n = O(d?) depends on leap exponent of target.

© What about multiple steps?

40



What you learn in multiple steps of GD?

Morally, it depends on how directions “interact’.

INn particular, there is a class of “easy” functions that
can be sequentially learned with n = G(d)

Staircase
Functions

[Abbe et al. '22]

4]



What you learn in multiple steps of GD?

At each additional step, can learn a new directions each time,
uﬂ: they are linear conditioned on the previously learned ones.

42



What you learn in multiple steps of GD?

At each additional step, can learn a new directions each time,
uﬂ: they are linear conditioned on the previously learned ones.

ff=z+8z)z, + 8273

=0 T=1 T=2 T=3

[Dandi, Krzakala, BL, Pesce, Stephan 23]
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What you learn in multiple steps of GD?

At each additional step, can learn a new directions each time,
uﬂ: they are linear conditioned on the previously learned ones.

=71+ 81z, + 8(2))z3

*
:'\- | - :.;:'

=z;+ g(zl)zz + h(z))z3

.0@

T=0 T=1 T=2 T=3

[Dandi, Krzakala, BL, Pesce, Stephan 23]



What you learn in multiple steps of GD?

At each additional step, can learn a new directions each time,
uﬂ: they are linear conditioned on the previously learned ones.

=271+ 82z, + (273 =z + 8(21)22 + 8 (Zz)Z3

*
WIS Srles 5.
, o q
i'.\ & :y«'

f* — & + g(Zl)Zz + h(Zl)Z3

.0@. -

T=0 T=1 T=2 T=3

"SGD easy”

[Dandi, Krzakala, BL, Pesce, Stephan 23] 42



What you learn in multiple steps of GD?

At each additional step, can learn a new directions each time,
uﬂ: they are linear conditioned on the previously learned ones.

f* =21+ 827 + 8(25)z3 =z1+8 (21)22 +8 (Zz)Z3
Zl T8 (21)22 + h(21)23 F= z1 + z2 + 21223
"SGD easy” *SGD hard”

[Dandi, Krzakala, BL, Pesce, Stephan 23] 42



Take away |V

With more than one step, might learn
lInearly correlated subspaces.

INn particular, there are classes of multi-index
models that can be learned in with n = O (d)

k}) Better than kernels, but fundamental computational barrier?

43



Fundamental limitation?

SGD learning on neural networks:
leap complexity and saddle-to-saddle dynamics

Emmanuel Abbe* Enric Boix-Adsera! Theodor Misiakiewicz?

September 4, 2023

Finally we note that we considered here the setting of online-SGD, and a natural question is to
consider how the picture may change under ERM (several passes with the same batch of samples).
The ERM setting is however harder to analyze. We consider this to be an important direction
for future works. Note that our results imply a sample complexity equal to the number of SGD
steps n = t = O(dmax(Leap—1,1)) ' T ERM, we ‘reuse samples and consequently reduce the sample
complexity. We conjecture in fact that n = ©(d™*(Leap/2.1) is optimal for ERM. Furthermore,

See also [Biroli, Cammarota, Ricci-Tersenghi '19; Damian, Niching, Ge, Lee ’23]

460



Fundamental limitation?

Single indexr = 1

gx = Hes(z)

_—
e |

X

2 -
B Full batch GD
G

< -

3

> g One-pass SGD
O I l I I I I |

0 1 2 3 4 5} 6
Time step

Recall: kernel requires n = O(d?)

[Dandi, Troiani, Arnaboldi, Pesce, Zdeborova, Krzakala '24;
Arnaboldi, Dandi, Krzakala, Pesce, Stephan 24']
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Closer look at Ist step

Consider one step of SGD

g

|

| by | p

2

€D,

(

1
Wiy = Wk ”gk

P

1
Yi— — Z aloa«wlo, X;))
P

y = p({wy, X))

) aka ((wk,xl))x

4t



Closer look at Ist step

Consider one step of SGD Wkl = Wk ngk Y = QW X))

1 1 &
8;9 = N Z (yi — Z aloa«wlo, xi>)) Clka«wk’xz))x

Therefore, on expectation:

0

a
[E[g]?] = — ?k[E[in’«w,?, X:))X;]+ Other (important) stuff
Ind. from (x;, y;)

4t



Closer look at Ist step

Consider one step of SGD Wkl = Wk ngk Y = QW X))

P

1 1
8;? = b0 |7 Z (Yi — _Z aloa((wlo,xi))) Clka«wk’xz))x
0

Therefore, on expectation:

0

a
[E[go] = — ?k[E[in’«w,?, X:))X;]+ Other (important) stuff
Ind. from (x;, y;)

al?ﬂ*ﬂ <W]9,W*>f :
D e+1 d

= O(d%)

The first only access data through a CSQ query E[y¢g(x)]

4t



Closer look at 2nd step

Consider one step of SGD w,? = Wk ngk Y = QW X))

P

1 1
8;61 = Ar Z (Yi — _Z aloa((wll,xl-))) Clka«wk’xz))x
1

Therefore, on expectation:

0
a
[E[gkl] = — ?k[E[in’(<wkl,xi>)xi]+ Other (important) stuff

45



Closer look at 2nd step

Consider one step of SGD w,? = Wk ngk Y = QW X))

P

1 1
8;61 = Ar Z (Yi — _Z aloa((wll,xl-))) Clka«wk’xz))x
1

Therefore, on expectation:

0
a
[E[gkl] = — ?k[E[in’(<wkl,xi>)xi]+ Other (important) stuff

Distinguish 2 cases: 1. Fresh batch:b; L b, = E[(wl,x)]=0 i€ b,

Same as before!
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Closer look at 2nd step

Consider one step of SGD w,? = Wk ngk Y = QW X))

1 1 &
8;61 = b Z yi—_zaloﬁ«wzlaxi)) Clka«wk’xz))x
| 1|pieb1 P

Therefore, on expectation:

0
a
[E[gkl] = — ?k[E[in’((wkl,xi))xi]+ Other (important) stuff

Distinguish 2 cases: 1. Fresh batch:b; L by = [E[(wl,xi)] =0

Same as before!

I € by

2. Correlated batch: eg. b, = by = [E[(wkl,xl-ﬂ = ()

g access data through a more general SQ query E[¢(x, y)].
Leap exponent not invariant under y = ¢(y)!

45



What are the fundamental barriers
for weak learnability in these models?

43



Re merm be r7 [Barbier et al. 17, Mondelli, Montanari 17,

Maillard, BL, Krzakala, Zdeborova '20;]

Signal Likelihood Observation
We~ P, —— Py|Xw,) ——yeR" o@

X Gaussian.

4t



Remember??

Estimate w, € R4 from n observations:

[Barbier et al. "17; Mondelli, Montanari 17,
Maillard, BL, Krzakala, Zdeborova '20;]

Yi = g(W*xi) Knowledge of

+

x; ~ N(O,1,/d) W

= Sd_l(\/c_z') and P(y | W, x)

4t



Re merm be r7 [Barbier et al. 17, Mondelli, Montanari 17,

Maillard, BL, Krzakala, Zdeborova '20;]

Estimate w, € R4 from n observations:

Yi = g(w*xi) Knowledge of
+

X, ~ N(0,1,/d) w* € Sd_l(\/c_l') and P(y | W, x)

Recall: G-AMP achieves optimal weak recovery threshold.

Error

~1
N | J (E.[(z* — DP(y|2)])* “Generic” Likelihoods:
: ac = dy O
. E.[P(y]|2)] Foranyn > 0,
: beat random guess
: Random guess e.g. g(z) p— Z3 —_ 3Z

Symmetric Likelihood:
Need n = O(d),
large enough
eg.g(x) =71
(@, = 1/2)

4t



MU‘t]—”’]deX [Aubin et al. "18;

Troiani, Dandi, Defilippis, Zdeborova, BL, Krzakala '24;]

Similar story for r > 1. y; = g(zl, ...,Z,,) T = (w,:(,x)
Error
A

Random guess

» O = —
d
Trivial subspaces: Easy subspaces: Hard sulbspaces:
Foranyn > 0, Need n = O(d), Need n > O(d),
beat random guess large enough e.g. g(z) = sign(z,2,23)
e.g. g(z) = tanh(z;2,23) e.g. 8(2) = 712023 “Parity-like”
-~ 3.725 Q. — 00

45



A TCS point of view

One-pass SGD Full-batch GD

Access data Access data
through through
Elyp(x)] E[T cp(y)p(x)]

G-AMP

Access data
through

E[T spp(y)p(x)]

460



A TCS point of view

One-pass SGD Full-batch GD G-AMP

Access data Access data Access data
through through through
Elyg(x)] [E[gGD(Y)Cb(X)] [E[tO/VAMP()’)ﬁb(x)]

f  E[T spp(0)Pp)] =0  then E[T(y)px)]=0

For any measurable Y : R - R

Moreover, for single index models (r = 1) a, 43,p Mmatches
SQ sample complexity.

Computational-Statistical Gaps in Gaussian Single-Index
Models

Alex Damian', Loucas Pillaud-Vivien?, Jason D. Lee®, and Joan Bruna*®

March 14, 2024 46



Hierarchical learning

y, =22 +sign(z,523) 7 = (W, x)

21 Q"***‘*X*x*xx*

2.5 -**'x
z2, 23 :C-?:
o
o 2.0 A
2
w x
= 1.5 1
x
=
3 1.0 —W
0 1 2 3 4 0 1 2 3 4
Sample complexity o = n/d Sample complexity a = n/d

Figure 2: Hierarchical weak learnability for the staircase function g(z1, 22, 23) = 22 + sign(z12223). (Left):
Overlaps with the first direction |Mj;| (blue), and with the second and third one 1/2(My; + M33) (red) as
a function of the sample complexity a = /4, with solid lines denoting state evolution curves Equation (8),
and crosses/dots finite-size runs of AMP Algorithm 1 with d = 500 and averaged over 72 seeds. All other
overlaps are zero (black). The two black dots indicate the critical thresholds at a; ~ 0.575 and ay = 72 /4.
(Right) Corresponding generalization error as a function of the sample complexity. Details on the numerical
implementation are discussed in Appendix D.
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Take away V:

Learning features improves allow shallow
networks to learn more efficiently

Benefit of multi-pass over single-pass SGD
for weak learnability

G-AMP classification of trivial, easy and hard
subspaces
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Part I:

Part |l:

Part Il

Overview

Statistical physics point of view on computational
complexity: a landscape point of view

Shallow networks at initialisation:
Double descent and benign overfitting in a convex,
linear model.

Benefits of feature learning in shallow networks:
Sample complexity and hierarchical learning
phenomena
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But this is only the tip of
an icepberq...
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