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Risk of ridge

Considering the SVD of , we can also write:X =
rank(X)

∑
k=1

λkukv⊤
k

𝒱 =
rank(X)

∑
k=1

σ2λ2
k

(λk + nλ)2

Remarks:

• For , we get the OLS excess riskλ → 0+

•  is an increasing function of ℬ(λ) λ

•  is a decreasing function of 𝒱(λ) λ

Sweet spot 
(data dependent)

ℬ =
rank(X)

∑
k=1

(nλ)2λk⟨vk, θ⋆⟩2

(λk + nλ)2



Interpretation of variance

df2(λ) =
d

∑
k=1

λ2
k

(λk + λ)2

Let  be a positive definite matrix with decreasing 
eigenvalues . Define the cumulative:

A ∈ ℝd×d

spec(A) = {λk : k = 1,⋯, d}

ϕ(λ) = #{k : λk > λ} “Count eigenvalues 
bigger than ”λ

The variance of the ridge risk can be seen as a soft version:

spec(A) = {0.5,1.5,3,5,10}

• Fast decay: small  
• Slow decay: large 

λ
λ



Choosing regularisation

High-frequencyLow-frequency

df2(λ)
Goal: pick  such that:λ

•  directions in  that better  
correlate with  are retained 

X
θ⋆

• Shrink remaining directions

In practice, cross-validation…



Best subset selection &  
the LASSO



Pitfalls of ridge
The ridge estimation performs uniform shrinkage.

̂θλ(X, y) =
1
n ( 1

n
X⊤X + λId)

−1

X⊤y

In other words:  regularisation will control the overall 
norm  by reducing each entry equally

ℓ2
| | ̂θλ | |2
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Pitfalls of ridge
The ridge estimation performs uniform shrinkage.
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• Good if  is a dense vectorθ⋆

• Bad if  is a sparse vectorθ⋆

θ⋆ =
θ⋆,j ≠ 0 i = 1,⋯, d

θ⋆,j = {0 j ∈ S ⊂ {1,…, d}
≠ 0 j ∈ {1,…, d}∖S θ⋆ =



Sparsity is everywhere
Many signals of interest admit a sparse representation in a 
particular basis.

f(x) = ∑
k≥0

fkψk(x) basis

coefficients



Sparsity is everywhere
Many signals of interest admit a sparse representation in a 
particular basis.

f(x) = ∑
k≥0

fkψk(x) basis

coefficients

Example: superposition of sine waves

f(t) = sin(10πt) + 0.5 sin(100πt) + 0.8 sin(240πt)

̂f(ω) = δ5 + 0.5 δ50 + 0.8 δ120



Sparsity is everywhere
Examples:

Sound Images

Scientific signals 
(mass spectrography) And many more…

• Portfolio selection (finance) 
• Networks (power grids) 
• electroencephalogram 
• Etc…



Best subset selection

Idea: encourage solutions which are sparse.

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

where  is the -“norm”:| | ⋅ | |0 : ℝd → {0,1,…, d} ℓ0

| |θ | |0 =
d

∑
j=1

𝕀(θj ≠ 0) = # non-zero entries

Strictly not a 
norm



Best subset selection

Idea: encourage solutions which are sparse.

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

| |θ | |0 =
d

∑
j=1

𝕀(θj ≠ 0) = # non-zero entries

• Large : encourage more sparsity 
• Small : encourage less sparsity

λ ≫ 1
λ ≪ 1

Hence,  controls the desired sparsity level λ ≥ 0

Strictly not a 
normwhere  is the -“norm”:| | ⋅ | |0 : ℝd → {0,1,…, d} ℓ0



BSS: visualisation
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| |θ | |0 θ1

θ2

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 = const

BSS: visualisation



| |θ | |0 θ1

θ2

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 = const

̂θλSolution

BSS: visualisation



To get some intuition about this problem, let’s consider a 
simplified setting: assume the covariates are orthogonal

X⊤X = Id (n ≥ d)

BSS: orthogonal covariates



To get some intuition about this problem, let’s consider a 
simplified setting: assume the covariates are orthogonal

X⊤X = Id (n ≥ d)
Then, we can rewrite:

| |y − Xθ | |2
2 = | |y | |2

2 + θ⊤X⊤Xθ − 2θ⊤X⊤y

BSS: orthogonal covariates



To get some intuition about this problem, let’s consider a 
simplified setting: assume the covariates are orthogonal

X⊤X = Id (n ≥ d)
Then, we can rewrite:

| |y − Xθ | |2
2 = | |y | |2

2 + θ⊤X⊤Xθ − 2θ⊤X⊤y

= | |y | |2
2 + | |θ | |2

2 − 2θ⊤z (z = X⊤y ∈ ℝd)

BSS: orthogonal covariates



To get some intuition about this problem, let’s consider a 
simplified setting: assume the covariates are orthogonal

X⊤X = Id (n ≥ d)
Then, we can rewrite:

| |y − Xθ | |2
2 = | |y | |2

2 + θ⊤X⊤Xθ − 2θ⊤X⊤y

= | |y | |2
2 + | |θ | |2

2 − 2θ⊤z

= | |y | |2
2 + | |z | |2

2 − | |z − θ | |2
2

(z = X⊤y ∈ ℝd)

BSS: orthogonal covariates



To get some intuition about this problem, let’s consider a 
simplified setting: assume the covariates are orthogonal

X⊤X = Id (n ≥ d)
Therefore, under the above:

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

min
θ∈ℝd

1
2n

| |z − θ | |2
2 + λ | |θ | |0

Is equivalent to:

Which is a simpler problem since it factorises coordinate-wise.

BSS: orthogonal covariates



Coordinate-wise, we need to solve

BSS: orthogonal covariates

min
θj∈ℝ

L(θj) := { 1
2n

(zj − θj)2 + λ𝕀(θj ≠ 0)}



Coordinate-wise, we need to solve

BSS: orthogonal covariates

Note that:

(a)

(b)

min
θj∈ℝ

L(θj) := { 1
2n

(zj − θj)2 + λ𝕀(θj ≠ 0)}

L(θj) =
1
2n

(zj − θj)2 + λ𝕀(θj ≠ 0) =
1
2n z2

j if θj = 0
1
2n (zj − θj)2 + λ if θj ≠ 0



Coordinate-wise, we need to solve

BSS: orthogonal covariates

Note that:

Note the solution of the problem is not unique:

(a)

(b)

• In case (a), solution is ̂θ(1)
λ,j = 0
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λ,j = zj
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Coordinate-wise, we need to solve

min
θj∈ℝ

L(θj) := { 1
2n

(zj − θj)2 + λ𝕀(θj ≠ 0)}

BSS: orthogonal covariates

Note that:

Note the solution of the problem is not unique:

(a)

(b)

• In case (a), solution is ̂θ(1)
λ,j = 0

• In case (b), solution is ̂θ(2)
λ,j = zj

Which one to pick? The one with minimal loss.
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1
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BSS: orthogonal covariates
Note the solution of the problem is not unique:

• In case (a), solution is ̂θ(1)
λ,j = 0

• In case (b), solution is ̂θ(2)
λ,j = zj

Which one to pick? The one with minimal loss.

L ( ̂θ(2)
λ,j) − L ( ̂θ(1)

λ,j) = −
z2
j

2n
+ λ ≥

?
0



BSS: orthogonal covariates
Note the solution of the problem is not unique:

• In case (a), solution is ̂θ(1)
λ,j = 0

• In case (b), solution is ̂θ(2)
λ,j = zj

Which one to pick? The one with minimal loss.

L ( ̂θ(2)
λ,j) − L ( ̂θ(1)

λ,j) = −
z2
j

2n
+ λ ≥

?
0 ⇔ 2nλ ≥ z2

j



BSS: orthogonal covariates
Note the solution of the problem is not unique:

• In case (a), solution is ̂θ(1)
λ,j = 0

• In case (b), solution is ̂θ(2)
λ,j = zj

Which one to pick? The one with minimal loss.

L ( ̂θ(2)
λ,j) − L ( ̂θ(1)

λ,j) = −
z2
j

2n
+ λ ≥

?
0 ⇔ 2nλ ≥ z2

j

̂θλ,j = {
0 if z2

j < 2nλ

zj if z2
j ≥ 2nλ

Hence, the solution is given by:

“Hard threshold”  
function



BSS: orthogonal covariates
Putting together, the solution of the BSS problem:

̂θλ = H 2nλ(X⊤y)

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

Under the assumption of  is given by:X⊤X = Id

Where:

Hλ(z) = {0 if |z | < λ
z otherwise



BSS: orthogonal covariates
To understand better this solution, consider a linear 
model for the data:

̂θλ = H 2nλ(θ⋆ + X⊤ε)

y = Xθ⋆ + ε

𝔼[ε] = 0
𝔼[εε⊤] = σInWith and  a -sparse vectorθ⋆ k

The, the solution is given by:



BSS: orthogonal covariates

Example: λ = 0.5n = 40
d = 30 σ2 = 1

θ⋆ -sparse5

| |θ⋆ | |2
2 = 5.35



BSS: beyond orthogonal
When the covariates are not orthogonal, an explicit solution 
is not available. Nevertheless, we can partially characterise it.
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•   the corresponding covariatesXS ∈ ℝn×|S|



BSS: beyond orthogonal
When the covariates are not orthogonal, an explicit solution 
is not available. Nevertheless, we can partially characterise it.

Let  denote the support of the BSS solutionS = {j ∈ [d] : ̂θλ,j ≠ 0}

Denoting: •   the non-zero entries of ̂θS ∈ ℝ|S| ̂θλ ∈ ℝd

•   the corresponding covariatesXS ∈ ℝn×|S|

We can write:

̂θS = X+
S y

In other words, BSS = OLS in the support!

The hard part is to find  as a function of …S X, y, λ



Pitfalls of BSS
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More generally, BSS is that it is a non-convex problem

In particular, for general covariates it is hard to optimise. 
(it is actually a NP-hard problem in the worst case)
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Pitfalls of BSS

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

More generally, BSS is that it is a non-convex problem

In particular, for general covariates it is hard to optimise. 
(it is actually a NP-hard problem in the worst case)

Question:  is what makes this non-convex. Can we 
find another regularisation with similar properties but 
convex?

| | ⋅ | |0

That’s the key idea of the LASSO.



LASSO

min
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n
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The Least Absolute Shrinkage and Selection Operator (LASSO) 
is defined as the solution of the following problem:
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| |θ | |1 =
d

∑
j=1

|θj |
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LASSO

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |1

The Least Absolute Shrinkage and Selection Operator (LASSO) 
is defined as the solution of the following problem:

where  is the -norm:| | ⋅ | |1 : ℝd → ℝ+ ℓ1

| |θ | |1 =
d

∑
j=1

|θj |

Note that both  and  are small for sparse 
vectors… why this is different?

| | ⋅ | |1 | | ⋅ | |2

Moreover, this is a convex problem.



LASSO: visualisation
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1
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| |θ | |1

θ1

θ2

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 = const
̂θλSolution

Sharper corners favours sparser solutions!

LASSO: visualisation


