

Statistical Learning II Lecture 9 - BSS & LASSO

Bruno Loureiro @ CSD, DI-ENS & CNRS

brloureiro@gmail.com

DL3 IASO, Université Paris Dauphine-PSL 20.11.2024

Risk of ridge

Considering the SVD of $X = \sum_{k=1}^{\operatorname{rank}(X)} \lambda_k u_k v_k^{\mathsf{T}}$, we can also write:

$$\mathscr{B} = \sum_{k=1}^{\operatorname{rank}(X)} \frac{(n\lambda)^2 \lambda_k \langle \boldsymbol{v}_k, \boldsymbol{\theta}_\star \rangle^2}{(\lambda_k + n\lambda)^2} \quad \mathscr{V} = \sum_{k=1}^{\operatorname{rank}(X)} \frac{\sigma^2 \lambda_k^2}{(\lambda_k + n\lambda)^2}$$

<u>Remarks:</u>

- For $\lambda \to 0^+$, we get the OLS excess risk
- $\mathscr{B}(\lambda)$ is an increasing function of λ
- $\mathcal{V}(\lambda)$ is a decreasing function of λ

Interpretation of variance

Let $A \in \mathbb{R}^{d \times d}$ be a positive definite matrix with decreasing eigenvalues spec $(A) = \{\lambda_k : k = 1, \dots, d\}$. Define the cumulative:

$$\phi(\lambda) = \#\{k : \lambda_k > \lambda\}$$

"Count eigenvalues bigger than λ "

The variance of the ridge risk can be seen as a soft version:

$$df_2(\lambda) = \sum_{k=1}^d \frac{\lambda_k^2}{(\lambda_k + \lambda)^2}$$

 \cdot Fast decay: small λ

• Slow decay: large λ

Choosing regularisation

<u>Goal</u>: pick λ such that:

directions in X that better correlate with θ_{\star} are retained

Shrink remaining directions

In practice, cross-validation...

Best subset selection & the LASSO

Pitfalls of ridge

The ridge estimation performs uniform shrinkage.

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X},\boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

In other words: ℓ_2 regularisation will control the overall norm $||\hat{\theta}_{\lambda}||_2^2$ by reducing each entry equally

Pitfalls of ridge

The ridge estimation performs uniform shrinkage.

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

In other words: ℓ_2 regularisation will control the overall norm $||\hat{\theta}_{\lambda}||_{2}^{2}$ by reducing each entry equally

Sparsity is everywhere

Many signals of interest admit a sparse representation in a particular basis.

Sparsity is everywhere

Many signals of interest admit a sparse representation in a particular basis.

Example: superposition of sine waves

 $f(t) = \sin(10\pi t) + 0.5\sin(100\pi t) + 0.8\sin(240\pi t)$

$$\hat{f}(\omega) = \delta_5 + 0.5 \ \delta_{50} + 0.8 \ \delta_{120}$$

Sparsity is everywhere

Examples:

Sound

Images

Scientific signals (mass spectrography)

And many more...

- Portfolio selection (finance)
- Networks (power grids)
- electroencephalogram
- Etc...

Best subset selection

Idea: encourage solutions which are sparse.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{0}$$

where $|| \cdot ||_0 : \mathbb{R}^d \to \{0, 1, \dots, d\}$ is the ℓ_0 -"norm": A Strictly not a norm

$$\|\boldsymbol{\theta}\|_{0} = \sum_{j=1}^{d} \mathbb{I}(\theta_{j} \neq 0) = \# \text{ non-zero entries}$$

Best subset selection

Idea: encourage solutions which are sparse.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left| \left| \boldsymbol{\theta} \right| \right|_{0}$$

where
$$|| \cdot ||_0 : \mathbb{R}^d \to \{0, 1, \dots, d\}$$
 is the ℓ_0 -"norm": $\bigwedge_{n \to \infty} \mathbb{S}^d$

Strictly not a norm

$$||\boldsymbol{\theta}||_0 = \sum_{j=1}^d \mathbb{I}(\theta_j \neq 0) = \# \text{non-zero entries}$$

Hence, $\lambda \ge 0$ controls the desired sparsity level

- Large $\lambda \gg 1$: encourage more sparsity
- Small $\lambda \ll 1$: encourage less sparsity

BSS: visualisation

BSS: visualisation

$$\frac{1}{2n}\sum_{i=1}^{n}(y_i - \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle)^2 = \text{const}$$

$$||\boldsymbol{\theta}||_0 \qquad \theta_1$$

$$\theta_2$$

BSS: visualisation

To get some intuition about this problem, let's consider a simplified setting: assume the covariates are orthogonal

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{I}_d \qquad (n \ge d)$$

To get some intuition about this problem, let's consider a simplified setting: assume the covariates are orthogonal

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{I}_d \qquad (n \ge d)$$

Then, we can rewrite:

$$||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||_{2}^{2} = ||\mathbf{y}||_{2}^{2} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} - 2\boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

To get some intuition about this problem, let's consider a simplified setting: assume the covariates are orthogonal

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{I}_d \qquad (n \ge d)$$

Then, we can rewrite:

$$||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||_{2}^{2} = ||\mathbf{y}||_{2}^{2} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} - 2\boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
$$= ||\mathbf{y}||_{2}^{2} + ||\boldsymbol{\theta}||_{2}^{2} - 2\boldsymbol{\theta}^{\mathsf{T}}\mathbf{z} \quad (\mathbf{z} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \in \mathbb{R}^{d})$$

To get some intuition about this problem, let's consider a simplified setting: assume the covariates are orthogonal

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{I}_d \qquad (n \ge d)$$

Then, we can rewrite:

$$||y - X\theta||_{2}^{2} = ||y||_{2}^{2} + \theta^{\top} X^{\top} X\theta - 2\theta^{\top} X^{\top} y$$

= $||y||_{2}^{2} + ||\theta||_{2}^{2} - 2\theta^{\top} z$ ($z = X^{\top} y \in \mathbb{R}^{d}$)
= $||y||_{2}^{2} + ||z||_{2}^{2} - ||z - \theta||_{2}^{2}$

To get some intuition about this problem, let's consider a simplified setting: assume the covariates are orthogonal

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{I}_d \qquad (n \ge d)$$

Therefore, under the above:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle \right)^2 + \lambda \left\| \boldsymbol{\theta} \right\|_0$$

Is equivalent to:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} ||\boldsymbol{z} - \boldsymbol{\theta}||_2^2 + \lambda ||\boldsymbol{\theta}||_0$$

Which is a simpler problem since it factorises coordinate-wise.

Coordinate-wise, we need to solve

$$\min_{\theta_j \in \mathbb{R}} L(\theta_j) := \left\{ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) \right\}$$

Coordinate-wise, we need to solve

$$\min_{\theta_j \in \mathbb{R}} L(\theta_j) := \left\{ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) \right\}$$

Note that:

$$L(\theta_j) = \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) = \begin{cases} \frac{1}{2n} z_j^2 & \text{if } \theta_j = 0 \text{ (a)} \\ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda & \text{if } \theta_j \neq 0 \text{ (b)} \end{cases}$$

Coordinate-wise, we need to solve

$$\min_{\theta_j \in \mathbb{R}} L(\theta_j) := \left\{ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) \right\}$$

Note that:

$$L(\theta_j) = \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) = \begin{cases} \frac{1}{2n} z_j^2 & \text{if } \theta_j = 0 \text{ (a)} \\ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda & \text{if } \theta_j \neq 0 \text{ (b)} \end{cases}$$

Note the solution of the problem is not unique:

- In case (a), solution is $\hat{\theta}_{\lambda,i}^{(1)} = 0$
- In case (b), solution is $\hat{\theta}_{\lambda,j}^{(2)} = z_j$

Coordinate-wise, we need to solve

$$\min_{\theta_j \in \mathbb{R}} L(\theta_j) := \left\{ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) \right\}$$

Note that:

$$L(\theta_j) = \frac{1}{2n} (z_j - \theta_j)^2 + \lambda \mathbb{I}(\theta_j \neq 0) = \begin{cases} \frac{1}{2n} z_j^2 & \text{if } \theta_j = 0 \text{ (a)} \\ \frac{1}{2n} (z_j - \theta_j)^2 + \lambda & \text{if } \theta_j \neq 0 \text{ (b)} \end{cases}$$

Note the solution of the problem is not unique:

- In case (a), solution is $\hat{\theta}_{\lambda,i}^{(1)} = 0$
- In case (b), solution is $\hat{\theta}_{\lambda,j}^{(2)} = z_j$

Which one to pick? The one with minimal loss.

Note the solution of the problem is not unique:

- In case (a), solution is $\hat{\theta}_{\lambda,i}^{(1)} = 0$
- In case (b), solution is $\hat{\theta}_{\lambda,j}^{(2)} = z_j$

Which one to pick? The one with minimal loss.

$$L\left(\hat{\theta}_{\lambda,j}^{(2)}\right) - L\left(\hat{\theta}_{\lambda,j}^{(1)}\right) = -\frac{z_j^2}{2n} + \lambda \ge 0$$

Note the solution of the problem is not unique:

- In case (a), solution is $\hat{\theta}_{\lambda,i}^{(1)} = 0$
- In case (b), solution is $\hat{\theta}_{\lambda,j}^{(2)} = z_j$

Which one to pick? The one with minimal loss.

$$L\left(\hat{\theta}_{\lambda,j}^{(2)}\right) - L\left(\hat{\theta}_{\lambda,j}^{(1)}\right) = -\frac{z_j^2}{2n} + \lambda \ge 0 \quad \Leftrightarrow \quad 2n\lambda \ge z_j^2$$

Note the solution of the problem is not unique:

- In case (a), solution is $\hat{\theta}_{\lambda,i}^{(1)} = 0$
- In case (b), solution is $\hat{\theta}_{\lambda,j}^{(2)} = z_j$

Which one to pick? The one with minimal loss.

$$L\left(\hat{\theta}_{\lambda,j}^{(2)}\right) - L\left(\hat{\theta}_{\lambda,j}^{(1)}\right) = -\frac{z_j^2}{2n} + \lambda \ge 0 \quad \Leftrightarrow \quad 2n\lambda \ge z_j^2$$

Hence, the solution is given by:

$$\hat{\theta}_{\lambda,j} = \begin{cases} 0 & \text{if } z_j^2 < 2n\lambda \\ z_j & \text{if } z_j^2 \ge 2n\lambda \end{cases}$$

"Hard threshold" function

Putting together, the solution of the BSS problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle \right)^2 + \lambda \left\| \boldsymbol{\theta} \right\|_0$$

Under the assumption of $X^{\top}X = I_d$ is given by:

$$\hat{\boldsymbol{\theta}}_{\lambda} = H_{\sqrt{2n\lambda}}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y})$$

Where:

$$H_{\lambda}(z) = \begin{cases} 0 & \text{if } |z| < \lambda \\ z & \text{otherwise} \end{cases}$$

To understand better this solution, consider a linear model for the data:

$$y = X\theta_{\star} + \varepsilon$$

With $\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}] = \sigma \boldsymbol{I}_n$ and $\boldsymbol{\theta}_{\star}$ a *k*-sparse vector $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$

The, the solution is given by:

$$\hat{\boldsymbol{\theta}}_{\lambda} = H_{\sqrt{2n\lambda}}(\boldsymbol{\theta}_{\star} + \boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon})$$

Example:
$$n = 40$$
 $\lambda = 0.5$ $\boldsymbol{\theta}_{\star}$ 5-sparse $d = 30$ $\sigma^2 = 1$ $||\boldsymbol{\theta}_{\star}||_2^2 = 5.35$

BSS: beyond orthogonal

When the covariates are not orthogonal, an explicit solution is not available. Nevertheless, we can partially characterise it.

BSS: beyond orthogonal

When the covariates are not orthogonal, an explicit solution is not available. Nevertheless, we can partially characterise it.

Let $S = \{j \in [d] : \hat{\theta}_{\lambda,j} \neq 0\}$ denote the support of the BSS solution

Denoting: $\hat{\theta}_{S} \in \mathbb{R}^{|S|}$ the non-zero entries of $\hat{\theta}_{\lambda} \in \mathbb{R}^{d}$

• $X_S \in \mathbb{R}^{n \times |S|}$ the corresponding covariates

BSS: beyond orthogonal

When the covariates are not orthogonal, an explicit solution is not available. Nevertheless, we can partially characterise it.

Let $S = \{j \in [d] : \hat{\theta}_{\lambda,j} \neq 0\}$ denote the support of the BSS solution Denoting: $\cdot \hat{\theta}_{S} \in \mathbb{R}^{|S|}$ the non-zero entries of $\hat{\theta}_{\lambda} \in \mathbb{R}^{d}$

• $X_S \in \mathbb{R}^{n \times |S|}$ the corresponding covariates

We can write:

$$\hat{\boldsymbol{\theta}}_{S} = X_{S}^{+} \boldsymbol{y}$$

In other words, BSS = OLS in the support!

The hard part is to find S as a function of X, y, λ ...

More generally, BSS is that it is a non-convex problem

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{0}$$

In particular, for general covariates it is hard to optimise. (it is actually a NP-hard problem in the worst case) More generally, BSS is that it is a non-convex problem

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{0}$$

In particular, for general covariates it is hard to optimise. (it is actually a NP-hard problem in the worst case)

Question: ||·||₀ is what makes this non-convex. Can we find another regularisation with similar properties but convex?

More generally, BSS is that it is a non-convex problem

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{0}$$

In particular, for general covariates it is hard to optimise. (it is actually a NP-hard problem in the worst case)

<u>Question</u>: $|| \cdot ||_0$ is what makes this non-convex. Can we find another regularisation with similar properties but convex?

That's the key idea of the LASSO.

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is defined as the solution of the following problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{1}$$

where $|| \cdot ||_1 : \mathbb{R}^d \to \mathbb{R}_+$ is the ℓ_1 -norm:

$$\left|\left|\boldsymbol{\theta}\right|\right|_{1} = \sum_{j=1}^{d} \left|\boldsymbol{\theta}_{j}\right|$$

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is defined as the solution of the following problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| \boldsymbol{\theta} \right\|_{1}$$

where $|| \cdot ||_1 : \mathbb{R}^d \to \mathbb{R}_+$ is the ℓ_1 -norm:

$$\left|\left|\boldsymbol{\theta}\right|\right|_{1} = \sum_{j=1}^{d} \left|\boldsymbol{\theta}_{j}\right|$$

Moreover, this is a **convex** problem.

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is defined as the solution of the following problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \frac{1}{2n} \sum_{i=1}^{n} \left(y_{i} - \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right)^{2} + \lambda \left\| |\boldsymbol{\theta}| \right\|_{1}$$

where $|| \cdot ||_1 : \mathbb{R}^d \to \mathbb{R}_+$ is the ℓ_1 -norm:

$$\left\| \left\| \boldsymbol{\theta} \right\| \right\|_{1} = \sum_{j=1}^{d} \left\| \boldsymbol{\theta}_{j} \right\|$$

Moreover, this is a **convex** problem.

Note that both $|| \cdot ||_1$ and $|| \cdot ||_2$ are small for sparse vectors... why this is different?

LASSO: visualisation

LASSO: visualisation

LASSO: visualisation

Sharper corners favours sparser solutions!