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Risk of ridge

rank(X)
Considering the SVD of X = 2 Ay, , we can also write:
k=1
rank(X 2 2 k(X 212
P N e Z(: e
2 2
— (A4 + nd) P (A4 + nd)
Remarks:
. osl Sweet spot
- For A — 0%, we get the OLS excess risk (data dependent)
- AB(A) I1s an Increasing function of 4 /
- 7'(A) 1s a decreasing function of A




INnterpretation of variance

Let A € R®“ be a positive definite matrix with decreasing
eigenvalues spec(A) = {4, : k = 1,---,d}. Define the cumulative:

PA) = #{k: 1, > A} “Count eigenvalues

bigger than A"

The variance of the ridge risk can be seen as a soft version:

d /113
)= g; (A + 4)?

- Fast decay: small A
- Slow decay: large 1

— d(A) (soft count)
Hard count

spec(A) = {0.5,1.5,3,5,10}




Choosing regularisation

Goal: pick 1 such that:

df>(4)

. directions in X that better
correlate with 0, are retained

- Shrink remaining directions

INn practice, cross-validation...
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Best subset selection &
the LASSO




Pitfalls of ridge

The ridge estimation performs uniform shrinkage.

7 L1 og B T
0, X,y)=—(—X'X+Al;)] X'y
n\n

In other words: ¢, regularisation will control the overall
norm ||@,| |§ by reducing each entry equally



Pitfalls of ridge

The ridge estimation performs uniform shrinkage.

7 L1 og B T
0, X,y)=—(—X'X+Al;)] X'y
n\n

In other words: ¢, regularisation will control the overall
norm ||@,| |§ by reducing each entry equally

- Good if 0, Is a dense vector —
0,= |E

0,,#0 i=1.d o

H

- Bad if @, Is a sparse vector — -

0 jesSclil,...d}
#0 je{l,....,d}\S

0*,] —

0, =




Sparsity Is everywhere

Many signals of interest admit a sparse representation in a
particular basis.

f) =) fay(x) - basis

k>0
\ coefficients



Sparsity Is everywhere

Many signals of interest admit a sparse representation in a
particular basis.

f) =) fay(x) - basis

k>0
\ coefficients

Example: superposition of sine waves

f(#) = sin(10x¢) 4+ 0.5 sin(1007x¢) 4+ 0.8 sin(2407x¢)

Time (s)

flw) = 65+ 0.5 555+ 0.8 6,

eeeeeeeeeeeee



Sparsity Is everywhere

Examples:

Scientific signals
(mass spectrography)

\nH ||| II

“ll‘ Il HHM“( |

kol bokd

Images
o Y /A
3 i

And many more...

Portfolio selection (finance)
Networks (power grids)
electroencephalogram
Etc...



Best subset selection

Q |dea: encourage solutions which are sparse.

1 « )
min — —(0,x)) + 1|6
ALiEp (vi= (0. %))+ 211011,
where || -], : R = {0,1,....d} is the £,-“norm”: /A igﬁ'y not

d
O], = Z 1(60; # 0) = # non-zero entries
j=1



Best subset selection

Q |dea: encourage solutions which are sparse.

1 « )
min — —(0,x)) + 1|6
ALiEp (vi= (0. %))+ 211011,
where || -], : R = {0,1,....d} is the £,-“norm”: /A igﬁ'y not

d
O], = Z 1(60; # 0) = # non-zero entries
j=1

Hence, 1 > 0 controls the desired sparsity level

. Large A> 1. encourage more sparsity
- Small 1 <« 1: encourage less sparsity



BSS: visualisation

11011,




BSS: visualisation

11011, 0,




BSS: visualisation

Solution é/l

11011, 0,




BSS: orthogonal covariates

To get some intuition about this problem, let's consider a
simplified setting: assume the covariates are orthogonal

X'Xx=1I, (n > d)
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BSS: orthogonal covariates

To get some intuition about this problem, let's consider a
simplified setting: assume the covariates are orthogonal

X'Xx=1I, (n > d)

Then, we can rewrite:

[y =XO115=11yll5+07X"X0 -207X Ty

=|1yl5+110]1;-20"z @=xTyeRrY)

2 2 2
=|lyll5+1lzll5=1lz=0]l;



BSS: orthogonal covariates

To get some intuition about this problem, let's consider a
simplified setting: assume the covariates are orthogonal

X'X=1I, (n > d)

Therefore, under the above:

minL ) ( —(0x))2+/1||0||

0cR? 2n = i i 0
|s equivalent to:

n— 12— 0] +110]]
min — | |z —
0cR? 2n 2 0

Which is a simpler problem since it factorises coordinate-wise.



BSS: orthogonal covariates

Coordinate-wise, we need to solve

, |
I%lelﬂg L(6’J-) — {Z(Zj — Hj)z + /Il](é’j + O)}



BSS: orthogonal covariates

Coordinate-wise, we need to solve

, |
glelﬂg L(6’J-) — {Z(Zj — Hj)z + /Il](é’j + O)}

Note that;

1 —77 if .=0 (a)
2 2n 7 J
L(Hj) — Z(Zj — @J-) /1”(9]- #0) =

1 ) :
E(zj—é’j) +4 if 6, #0 (b)



BSS: orthogonal covariates

Coordinate-wise, we need to solve
1
. . 2
glelﬂg L(6)) := {Z(Zj — 0)" + A0, # O)}

Note that;

| ) : _
w5 if 6; =0 (a)

1 ) :
E(zj—é’j) +4 if 6, #0 (b)

1
L) = 5—(5= )" + A6, % 0) =

Note the solution of the problem is not unique:

. In case (a), solution is é?]? = ()

. In case (b), solution is éf]? =z
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BSS: orthogonal covariates

Note the solution of the problem is not unique:

n case (a), solution is éﬁlj? = ()

n case (b), solution is éf]? =z,

Which one to pick? The one with minimal loss.

L (é@)) s (é“)) —_ 9 4150
A A 2n 9




BSS: orthogonal covariates

Note the solution of the problem is not unique:

n case (a), solution is éﬁlj? = ()

n case (b), solution is éf]? =z,

Which one to pick? The one with minimal loss.

2

Z
N2\ _ D\ — J_ 2
L<H/I,j) L<9 > > /1%0 S 2l>z




BSS: orthogonal covariates

Note the solution of the problem is not unique:

n case (a), solution is éﬁlj? = ()

n case (b), solution is éf]? =z,

Which one to pick? The one with minimal loss.

2
VaN A\ Z.
L(@@?)—L(eﬂ?): I 11>0 o
Ao Ao 2n

?

Hence, the solution is given by:

. 0 if z7 < 2nA
H/l,] —

Z; if ij > 2nA

2nA > ij

“Hard threshold”
function



BSS: orthogonal covariates

Putting together, the solution of the BSS problem:

I 2
min — (yi—(ﬂ,xi>) +A[10]],

Under the assumption of X'X =1, is given by:
0,=H /:(X"y)

Where;

0 if |z| <2 .
Hy(z) = { 2 . :
z otherwise




BSS: orthogonal covariates

To understand better this solution, consider a linear
model for the data:

y=X0, +e¢

With Elee'] = oI, and @, ak-sparse vector
Ele] =0

The, the solution is given by:

0, =H Jami0x + XTe)



BSS: orthogonal covariates

Example: n =40 A=0.5 0, 5-sparse

_ 2 _
d=30 o"=1119,]15=535

Components of Best Subset Selection Estimator with Increased Noise

? é (Best Subset Estimator)
3F ® 6. (True Parameter)

[ |

RN mARAAAL
T |

[ J
0 5 10 15 20 25 30
Component Index

Value




BSS: beyond orthogonal

When the covariates are not orthogonal, an explicit solution
IS not available. Nevertheless, we can partially characterise it.
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Denoting: - 6, € R the non-zero entries of §, € R?

. X, € Rl the corresponding covariates



BSS: beyond orthogonal

When the covariates are not orthogonal, an explicit solution
IS not available. Nevertheless, we can partially characterise it.

LetS={j e [d]: éﬂ,j # (0} denote the support of the BSS solution

Denoting: - 6, € R the non-zero entries of §, € R?
. X, € Rl the corresponding covariates

We can write:

In other words, BSS = OLS In the support!

The hard part isto find § as a function of X, y, 4...



Pitfalls of BSS

More generally, BSS is that it is a non-convex problem

B 2
min — (yi—(ﬂ,x,-)) +A[10]],

OcRr? 2n 4
=1

In particular, for general covariates it is hard to optimise.
(it 1s actually a NP-hard problem in the worst case)
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= Question: || -], Is what makes this non-convex. Can we

find another regularisation with similar properties but
convex?




Pitfalls of BSS

More generally, BSS is that it is a non-convex problem

B 2
min — (yi—(ﬂ,x,-)) +A[10]],

In particular, for general covariates it is hard to optimise.
(it 1s actually a NP-hard problem in the worst case)

~

= Question: || -], Is what makes this non-convex. Can we

find another regularisation with similar properties but
convex?

Q That's the key idea of the LASSO.



LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)
Is defined as the solution of the following problem:

1 « 2
min — .—(0,x:)) +4[|60
it o & (vi = (0,x;))" + 211011,
where || - ||, : RY > R, is the #;-norm:

d

611, =) 16

j=1



LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)
Is defined as the solution of the following problem:

1 n

2
min — .—(0,x:)) +4[|60
bR’ 2n L= i = @)+ 211011,
where || - ||, : RY > R, is the #;-norm:

d
611, =) 16
j=1

Moreover, this Is a convex problem.



LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)
Is defined as the solution of the following problem:

1 n

2
min — .—(0,x:)) +4[|60
min - 25 (5= @-x))" + 11011
where || - ||, : RY > R, is the #;-norm:

d
611, =) 16
j=1

Moreover, this Is a convex problem.

Note that both || - ||, and []- ],
vectors... why this is different?

are small for sparse



LASSQO: visualisation

AN
NG



LASSQO: visualisation




LASSQO: visualisation

Solution éﬂ

Sharper corners favours sparser solutions!



