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Feature maps

Idea: Introduce a feature map:

φ : ℝd → ℝp

x ↦ φ(x)

And consider a linear predictor in feature space:

fθ(x) = ⟨θ, φ(x)⟩

• Now we have . 
•  still a linear function of . 
• Typically . 
• More generally, we can consider 

θ ∈ ℝp

fθ θ
p > d

φ : 𝒳 → ℝp

Example:  a collection of books.𝒳



x ∈ ℝ2 (d = 2) p(x) =
1
4

4

∑
k=1

𝒩(μk, I2)

Examples: XOR Gaussian mixture

x1x2

φ(x) = [
x1
x2

x1x2
]



Ridge regression on feature space
Let  denote training data and 

 a feature map.
𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

φ : 𝒳 → ℝp

min
θ∈ℝp

1
2n

n

∑
i=1

(yi − ⟨θ, φ(xi)⟩)2 +
λ
2

| |θ | |2
2
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Ridge regression on feature space
Let  denote training data and 

 a feature map.
𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

φ : 𝒳 → ℝp

Defining the feature matrix and label vector:

Φ =
φ(x1)

⋮
φ(xn)

∈ ℝn×p y =
y1
⋮
yn

∈ ℝn

The above admits an explicit solution:

̂θλ(Φ, y) = (Φ⊤Φ + nλIp)−1Φ⊤y

min
θ∈ℝp

1
2n

n

∑
i=1

(yi − ⟨θ, φ(xi)⟩)2 +
λ
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Ridge regression on feature space
Let  denote training data and 

 a feature map.
𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

φ : 𝒳 → ℝp

Note we can equivalently write:

̂θλ(Φ, y) = {
(Φ⊤Φ + nλIp)−1Φ⊤y

Φ⊤(ΦΦ⊤ + nλIn)−1y

Same result, but one might be cheaper than 
the other.

min
θ∈ℝp

1
2n

n

∑
i=1

(yi − ⟨θ, φ(xi)⟩)2 +
λ
2

| |θ | |2
2



Kernels
Note that the solution: 

Actually lives in the . span(φ(x1), …, φ(xn))
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Kernels
Note that the solution: 

Actually lives in the . This means we 
can also write:

span(φ(x1), …, φ(xn))

̂θλ = Φ⊤α̂λ

̂θλ(Φ, y) = Φ⊤(ΦΦ⊤ + nλIn)−1y

α̂λ(Φ, y) = (ΦΦ⊤ + nλIn)−1y

And the predictor:

fθ(x) = ⟨ ̂θλ, φ(x)⟩ = ⟨α̂λ, Φφ(x)⟩



Kernels

α̂λ(Φ, y) = (ΦΦ⊤ + nλIn)−1y

fθ(x) = ⟨ ̂θλ, φ(x)⟩ = ⟨α̂λ, Φφ(x)⟩

Note everything only depends on the scalar product of features

K(x, x′ ) = ⟨φ(x), φ(x′ )⟩

This is also known as a kernel.



Kernels

α̂λ(Φ, y) = (ΦΦ⊤ + nλIn)−1y

fθ(x) = ⟨ ̂θλ, φ(x)⟩ = ⟨α̂λ, Φφ(x)⟩

Note everything only depends on the scalar product of features

K(x, x′ ) = ⟨φ(x), φ(x′ )⟩

This is also known as a kernel.

This is true for any linear predictor, and goes 
under the name of “representer theorem”



Kernel methods
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As we have shown in the previous examples, it is easier 
to linearly separate a function in higher dimensions.

Key idea: Take the number of features to infinity ( )p → ∞

First, we need to make sense of …ℝ∞

A Hilbert space  is a vector space (over  or ) with an 
inner product  which is complete.

ℋ ℝ ℂ
⟨ ⋅ , ⋅ ⟩ℋ : ℋ × ℋ → ℝ

Definition (Hilbert space)

Informally, an inner product is the minimum we need to 
do linear algebra in infinite dimensions
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Hilbert space

A Hilbert space  is a vector space (over  or ) with an 
inner product  which is complete.

ℋ ℝ ℂ
⟨ ⋅ , ⋅ ⟩ℋ : ℋ × ℋ → ℝ

Definition (Hilbert space)

• Vector space (over ): Let  and ℝ a, b ∈ ℝ f, g ∈ ℋ

af + bg ∈ ℋ + usual properties of the sum 

• Inner product: a function  such that:⟨ ⋅ , ⋅ ⟩ℋ : ℋ × ℋ → ℝ

-  
-  with equality iff  
-

⟨ f, g⟩ℋ = ⟨g, f ⟩ℋ
| | f | |2

ℋ = ⟨ f, f ⟩ℋ ≥ 0 f = 0
⟨af + bg, h⟩ℋ = a⟨ f, h⟩ℋ + b⟨g, h⟩ℋ

• Complete: Cauchy sequences  converge fn ∈ ℋ f∞ ∈ ℋ
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Examples of Hilbert spaces

•  with the usual Euclidean inner product:ℋ = ℝd

⟨u, v⟩2 =
d

∑
i=1

viui

• : sequences   with ℓ2(ℝ) u = (u1, u2, …)

| |u | |2
ℓ2 = ⟨u, u⟩ℓ2 =

∞

∑
i=1

|ui |
2 < ∞Such that:

• : functions  with L2(ℝ) f : ℝ → ℝ

Such that:

⟨ f, g⟩L2(ℝ) = ∫
∞

−∞
f(x)g(x)dx

| | f | |2
L2(ℝ) = ⟨ f, f⟩L2(ℝ) = ∫

∞

−∞
| f(x) |2 dx < ∞
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Infinite dimensional features
This provides the right structure to define infinite 
dimensions features.

Let  denote a Hilbert space with inner product .ℋ ⟨ ⋅ , ⋅ ⟩ℋ

Idea: Given data , define features:x ∈ 𝒳

and predictors: with .θ ∈ ℋ

Problems:

φ : 𝒳 → ℋ
x ↦ φ(x)

fθ(x) = ⟨θ, φ(x)⟩ℋ

• In general . 
• Class of functions  defined 

this way can be small.

f ∉ ℋ
f : 𝒳 → ℝ



Example
Let  with standard Euclidean inner product.ℋ ⊂ ℝ2

Let  be a discrete data space. Define 𝒳 = {x1, x2, x3} φ : 𝒳 → ℋ

φ(x1) = [1
0] φ(x2) = [0

1] φ(x3) = [1
1]



Example

Let  be a discrete data space. Define 𝒳 = {x1, x2, x3} φ : 𝒳 → ℋ

φ(x1) = [1
0] φ(x2) = [0

1] φ(x3) = [1
1]

For any , define the function:θ = [θ1

θ2] ∈ ℋ

f(x1) = θ1We have:

f(x) = ⟨θ, φ(x)⟩

f(x2) = θ2 f(x3) = θ1 + θ2

Let  with standard Euclidean inner product.ℋ ⊂ ℝ2



Example

Let  be a discrete data space. Define 𝒳 = {x1, x2, x3} φ : 𝒳 → ℋ

φ(x1) = [1
0] φ(x2) = [0

1] φ(x3) = [1
1]

For any , define the function:θ = [θ1

θ2] ∈ ℋ

f(x1) = θ1We have:

f(x) = ⟨θ, φ(x)⟩

f(x2) = θ2 f(x3) = θ1 + θ2

Only few functions on  can be expressed this way.𝒳

e.g.  can’t express f(x1) = 1 f(x2) = 0 f(x3) = 2

Let  with standard Euclidean inner product.ℋ ⊂ ℝ2
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To make the Hilbert space compatible with , we need 
the following reproducing property:

𝒳

A Hilbert space  of functions over  is said to be a 
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φ ∈ ℋ

Definition (RKHS)

∀x ∈ 𝒳 ∀f ∈ ℋ f(x) = ⟨ f, φ(x)⟩ℋ



Reproducing property
To make the Hilbert space compatible with , we need 
the following reproducing property:

𝒳

𝒳
ℋ

x

φ(x)

f

ℝ
f(x)

⟨ ⋅ , ⋅ ⟩ℋ

φ

f

A Hilbert space  of functions over  is said to be a 
“Reproducing Kernel Hilbert Space” (RKHS) if there 
exists  such that:

ℋ 𝒳

φ ∈ ℋ

Definition (RKHS)

∀x ∈ 𝒳 ∀f ∈ ℋ f(x) = ⟨ f, φ(x)⟩ℋ



Kernel ridge regression
Let  denote training data. We now 
have everything we need to define ERM on a RKHS.

𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

min
f∈ℋ

1
2n

n

∑
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(yi − f(xi))2 +
λ
2

| | f | |2
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Let  denote training data. We now 
have everything we need to define ERM on a RKHS.

𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

By using the feature map , this can be equivalently 
written:

φ : 𝒳 → ℋ

min
θ∈ℋ

1
2n

n

∑
i=1

(yi − ⟨θ, φ(xi)⟩ℋ)2 +
λ
2
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ℋ

min
f∈ℋ

1
2n

n

∑
i=1

(yi − f(xi))2 +
λ
2

| | f | |2
ℋ

Closed-form in terms of “infinite dimensional” 
matrices “ ”?Φ ∈ ℝn×∞

Kernel ridge regression



Let  denote training data. We now 
have everything we need to define ERM on a RKHS.
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Let  denote training data. We now 
have everything we need to define ERM on a RKHS.

𝒟 = {(xi, yi) ∈ 𝒳 × ℝ : i ∈ [n]}

min
θ∈ℋ

1
2n

n

∑
i=1

(yi − ⟨θ, φ(xi)⟩ℋ)2 +
λ
2

| |θ | |2
ℋ

Kernel ridge regression

As before, defining the kernel function and matrix

K(x, x′ ) = ⟨φ(x), φ(x′ )⟩ℋ

The solution can be written as:

̂f(x) =
n

∑
i=1

α̂λ,iK(x, xi) α̂λ(Φ, y) = (K + nλIn)−1y

Kij = ⟨φ(xi), φ(xj)⟩ℋ
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Kernels
Note that in practice, to do ridge regression on  we don’t 
even need to know what  is. It suffices to have .

ℋ
φ K

K(x, x′ ) = ⟨φ(x), φ(x′ )⟩ℋ

A function  defines a positive definite Kernel 
if and only if there exists a Hilbert space  and a map 

 such that:

K : 𝒳 × 𝒳 → ℝ
ℋ

φ : 𝒳 → ℋ

Theorem (Aronszajn, 1950)

∀x, x′ ∈ 𝒳

A kernel can correspond to several feature maps. e.g. 𝒳 = ℝ

φ(x) = x φ(x) =
1

2 [x
x] K(x, x′ ) = xx′ 

In words: specifying  and  is completely equivalent to 
specifying ,

ℋ φ
K
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Examples of Kernels

• Gaussian kernel: K(x, x′ ) = e− 1
2σ2 ||x−x′ ||2

2

• Laplace kernel: K(x, x′ ) = e−λ||x−x′ ||2

(a.k.a. RBF)

• Polynomial kernel: K(x, x′ ) = (⟨x, x′ ⟩ + b)k

• Translational 
invariant kernels

K(x, x′ ) = κ(x − x′ )

• Rotationally 
invariant kernels

K(x, x′ ) = κ(⟨x, x′ ⟩)

Or any other positive-definite function…

In general, finding  associated to these is not 
obvious.

φ



Examples of Kernels
yi = sin(x) + ε

ε ∼ 𝒩(0,0.22)

n = 100

λ = 0.1


