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Principal component analysis

(PCA)



Variance reduction

• As we saw in Lecture 6, the OLS estimator suffers from high-
variance in directions with small singular values.
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What about getting rid of these directions directly? 



Principal component analysis
Let  denote  i.i.d. covariates. Define .xi ∈ ℝd i = 1,…, n X ∈ ℝn×d

Without loss of generality, assume data is centred.
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Principal component analysis
Let  denote  i.i.d. covariates. Define .xi ∈ ℝd i = 1,…, n X ∈ ℝn×d

Without loss of generality, assume data is centred.

Goal: find a lower dimensional approximation of .X

Simplest case: find best -dimensional linear approximation of .k X

n = 500
d = 2
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Mathematically:

• Let ,  such that  with zi ∈ ℝd i = 1,…, n span(z1, …, zn) = ℝk k ≤ d
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The PCA problem consists of:

This can be equivalently written as:
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Principal component analysis
As we saw in Lecture 1, the solution to this problem is the SVD!

argmin
Z ∈ ℝn×d,

rank(Z) ≤ k

| |Z − X | |2
F =

k

∑
j=1

σjujvj

In other words, the best -dimensional linear approximation to 
the data consists of retaining only the top  singular values.

k
k

This result holds for more general norms, and is known 
as the Eckart-Young-Minsky Theorem

Remark: This is equivalent to keeping the  directions with 
largest variance in the data.
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PCA in practice
In practice, how to choose the k?

Total variance of data given by: Tr(Σ̂n) =
1
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∑
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Up to know, our focus has been on parametric functions 
which are linear on both  and .

fθ(x)
θ ∈ ℝd x ∈ ℝd

fθ(x) = ⟨θ, x⟩

The main convenience of linear functions is that for convex loss 
functions, the ERM problem is convex:

min
θ∈ℝd

1
n

n

∑
i=1

ℓ(yi, fθ(x))

But the main drawback is that we can only express linear 
relationships between the covariates and the labels…



Motivation

x

y

fθ(x) = θx + b
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Feature maps

Idea: Introduce a feature map:

φ : ℝd → ℝp

x ↦ φ(x)

And consider a linear predictor in feature space:

fθ(x) = ⟨θ, φ(x)⟩

• Now we have .

•  still a linear function of .

• Typically .

• More generally, we can consider 

θ ∈ ℝp

fθ θ
p > d

φ : 𝒳 → ℝp

Example:  a collection of books.𝒳



Feature maps

φ

Intuition: Typically easier to linearly separate data in 
higher-dimensions
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Examples: quadratic function

fθ(x) = θx + b

fθ(x) = θ1x2 + θ2x + b

φ(x) = [x2

x ]θ = [θ1

θ2]Question: what is ?φ(x) (p = 2)

x ∈ ℝ (d = 1) fθ(x) = ⟨θ, φ(x)⟩ + b
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More generally, any polynomial of degree  over k ∈ ℕ ℝ

p(x) =
k

∑
j=1

θjxj + b = θkxk + θk−1xk−1 + … + θ1x + b

Can be written as a linear function in :ℝk

p(x) = ⟨θ, φ(x)⟩ + b φ(x) =

x
x2

⋮
xk

∈ ℝk

We can generalise this to degree  polynomials in :k ℝd

p(x) = ⟨θ, φ(x)⟩ + b φ(x) =

x1
x2

x2
1

x1x2

x2
2

∈ ℝ5Example :d = 2
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Examples: data in circle

x ∈ ℝ2 (d = 2) y = {+1 if x2
1 + x2

2 ≤ 1
−1 if x2

1 + x2
2 > 1

φ(x) =
x1
x2

x2
1 + x2

2

(p = 3) Not unique!
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μ2 = [−1
1 ] μ3 = [1

1]

μ4 = [ 1
−1]
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Examples: XOR Gaussian mixture

x ∈ ℝ2 (d = 2) p(x) =
1
4

4

∑
k=1

𝒩(μk, I2)

Note that:

x1x2 = − 1

(x1, x2) ∈ {(1, − 1), (1, − 1)}

φ(x) = [
x1
x2

x1x2
]

y = − 1

or…

(x1, x2) ∈ {(−1, − 1), (1,1)}

or…

x1x2 = + 1

This motivates a choice: 

y = + 1

(p = 3)



x ∈ ℝ2 (d = 2) p(x) =
1
4

4

∑
k=1

𝒩(μk, I2)

Examples: XOR Gaussian mixture

x1x2

φ(x) = [
x1
x2

x1x2
]


