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Best subset selection

Q |dea: encourage solutions which are sparse.

1 « )
min — —(0,x)) + 1|6
ALiEp (vi= (0. %))+ 211011,
where || -], : R = {0,1,....d} is the £,-“norm”: /A igﬁ'y not

d
O], = Z 1(60; # 0) = # non-zero entries
j=1

Hence, 1 > 0 controls the desired sparsity level

. Large A> 1. encourage more sparsity
- Small 1 <« 1: encourage less sparsity



LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)
Is defined as the solution of the following problem:

1 n

2
min — .—(0,x:)) +4[|60
min - 25 (5= @-x))" + 11011
where || - ||, : RY > R, is the #;-norm:

d
611, =) 16
j=1

Moreover, this Is a convex problem.

Note that both || - ||, and []- ],
vectors... why this is different?

are small for sparse
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LASSQO: visualisation

Solution éﬂ

Sharper corners favours sparser solutions!



LASSO: orthogonal covariates
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X'X=1I, (n > d)



LASSO: orthogonal covariates

Again, we can get intuition by looking at the orthogonal
covariate case:

X'X=1I, (n > d)

Following exactly the same steps from before, In this case
we need to solve the following coordinate wise problem:

1
. . 2
ggﬂgL(é}) = {—zn(zj—é’j) + 416;] }



LASSO: orthogonal covariates

Again, we can get intuition by looking at the orthogonal
covariate case:

X'X=1I, (n > d)

Following exactly the same steps from before, In this case
we need to solve the following coordinate wise problem:

1
. . 2
ggﬂgL(é}) = {—zn(zj—é’j) + 416;] }

1 2
—(z;—0)*+ 46, for 6. >0 (a)

72

4 for 6, = 0 (b)

2n

1 2
—(z;—60)* =46, for 6, <0 (c)

As before, we note that: L(6;) =
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LASSO: orthogonal covariates

1 2
—(z;—0)*+ 26, for 6. >0 (a)

2

L@) =4 2 for 6, =0 (o)

2n

1 2
—(z;—60)> =26, for 6, <0 (c)

In case (a), solution is: 0=z—ni valdfor z> ni

In case (b), solutionis: €, =0

In case (c), solution is: 0=z +nk validfor %> - nA

Putting 5 _ g — sign(zgynd for |z| > 4 Soft-thresholding
together: / 0 for |z;| € [—4, 4] function



LASSO: orthogonal covariates

Putting together, the solution of the LASSO problem:

I 2
min — (yi—(ﬂ,xi>) +A[|0]],

OcRr? 2n 4
=1

Under the assumption of X'X =1, is given by:
0,=S5 X"y

. 2.0 — soft Th hld(l/\=1)
Where: | S Thresho

S (2) = z—sign(x)A 1t |z| > 4
Y70 if 7] < 2




BSS vs. LASS0

It Is Instructive to compare the BSS and LASSO
solutions in the orthogonal covariate case

3 —— Soft Threshold (A = 1)
Hard Threshold (A = 1)
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BSS vs. LASS0

It Is Instructive to compare the BSS and LASSO
solutions in the orthogonal covariate case

3 —— Soft Threshold (A = 1)
Hard Threshold (A = 1)
2H---- %A

. Key similarity: both solutions induce sparsity
. Key differences: LASSO is convex and induce
shrinkage (e.g.z—Aforz> 1)




BSS vs. LASS0

1 =20 d=10 y, =(0,,x,) + & g ~ N(0,1) X'X=1I,,

0, is 5-sparse

_________________________________________________ — LASSO 65
— == Subset Selection 6g

Coefficient Values 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Reqgularization Strength A

. BSS is discontinuous
. LASSO Is plece-wise continuous

A For general design, non-zero path not simply a line



LASSO: beyond orthogonal

Again, when the covariates are not orthogonal, an explicit
solution for the LASSO is not available. Nevertheless, we can
partially characterise it.
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Again, when the covariates are not orthogonal, an explicit
solution for the LASSO is not available. Nevertheless, we can
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LetS={j e [d]: @M #+ 0} denote the support of the LASSO solution

A For this to be well-defined, assume 8, unique

Denote: - 0, € RIS the non-zero entries of 9, € R
. X; € R™Bl the corresponding covariates
. s =sign(@)) € {—1, + 1}¥ the signs.
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Then, the by the optimality condition 6, € Rl satisfies:

Therefore, the LASSO solution satisfies:

05 = (XIXg) ™ (X]y — nisg) 0_5=0,

A 't can be shown uniqueness imply X¢ X > 0
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Then, the by the optimality condition 6, € Rl satisfies:

Therefore, the LASSO solution satisfies:

Vo

A ~1

0= (X{X;)  (XJy—nisg) 0_s=0,_
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< |1(X7X5) " Xy 11,



LASSO: beyond orthogonal

Then, the by the optimality condition 6, € Rl satisfies:

Therefore, the LASSO solution satisfies:

Vo

A ~1

0= (X{X;)  (XJy—nisg) 0_s=0,_
Shrinkage

A 't can be shown uniqueness imply X¢ X > 0

INn particular, note that:

A A -1 1
110,11, =s405=s¢ (XSTXS) XJy—nlsg (XSTXS) Sg

—1 A ~
<IH(X{Xs) Xgyll;  10iassoll, < 0o, 1
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LASSO In practice

Beyond the orthogonal case, the LASSO problem:

B 2
min — (yi—(ﬂ,x,-)) +A[[0]],

does not admit an explicit solution. How do we do In practice?

v

LASSO = OLS + 7, penalty

|ldea: alternate between these two.

Iterative Shrinkage-Thresholding Algorithm (ISTA)

' =, (0’< FLXT(y - Xak))
n



LASSO In practice
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LASSO In practice
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Elastic Net

The elastic net algorithm combines ridge with LASSO:

I 2 A
min — > (5= (0.x)) + 2 11011, + 11011

OcRr? 2n 4
=1

And Is particularly suited to the case where the covariate X is
badly conditioned.



