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Best subset selection

Idea: encourage solutions which are sparse.

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |0

| |θ | |0 =
d

∑
j=1

𝕀(θj ≠ 0) = # non-zero entries

• Large : encourage more sparsity 
• Small : encourage less sparsity

λ ≫ 1
λ ≪ 1

Hence,  controls the desired sparsity level λ ≥ 0

Strictly not a 
normwhere  is the -“norm”:| | ⋅ | |0 : ℝd → {0,1,…, d} ℓ0



LASSO

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |1

The Least Absolute Shrinkage and Selection Operator (LASSO) 
is defined as the solution of the following problem:

where  is the -norm:| | ⋅ | |1 : ℝd → ℝ+ ℓ1

| |θ | |1 =
d

∑
j=1

|θj |

Note that both  and  are small for sparse 
vectors… why this is different?

| | ⋅ | |1 | | ⋅ | |2

Moreover, this is a convex problem.



LASSO: visualisation
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n
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LASSO: visualisation



| |θ | |1

θ1

θ2

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 = const
̂θλSolution

Sharper corners favours sparser solutions!

LASSO: visualisation



Again, we can get intuition by looking at the orthogonal 
covariate case:

X⊤X = Id (n ≥ d)

LASSO: orthogonal covariates
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LASSO: orthogonal covariates

Following exactly the same steps from before, in this case 
we need to solve the following coordinate wise problem:

min
θj∈ℝ

L(θj) := { 1
2n

(zj − θj)2 + λ |θj |}

As before, we note that: L(θj) =

1
2n (zj − θj)2 + λθj for θj > 0
z2
j

2n for θj = 0
1
2n (zj − θj)2 − λθj for θj < 0
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In case (a), solution is: θj = zj − nλ zj > nλvalid for
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1
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In case (a), solution is: θj = zj − nλ
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In case (c), solution is:
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LASSO: orthogonal covariates

L(θj) =

1
2n (zj − θj)2 + λθj for θj > 0
z2
j

2n for θj = 0
1

2n (zj − θj)2 − λθj for θj < 0

(a)

(b)

(c)

In case (a), solution is: θj = zj − nλ

In case (b), solution is: θj = 0

In case (c), solution is:

θj = {
zj − sign(zj)nλ for |zj | > λ
0 for |zj | ∈ [−λ, λ]

zj > nλvalid for

valid for zj > − nλ

Putting  
together:

θj = zj + nλ

Soft-thresholding 
function



Putting together, the solution of the LASSO problem:

̂θλ = Snλ(X⊤y)

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |1

Under the assumption of  is given by:X⊤X = Id

Where:

Sλ(z) = {z − sign(z)λ if |z | > λ
0 if |z | < λ

LASSO: orthogonal covariates



It is instructive to compare the BSS and LASSO 
solutions in the orthogonal covariate case

BSS vs. LASSO



It is instructive to compare the BSS and LASSO 
solutions in the orthogonal covariate case

BSS vs. LASSO

• Key similarity: both solutions induce sparsity 
• Key differences: LASSO is convex and induce 

shrinkage (e.g.  for )z − λ z > λ



BSS vs. LASSO
n = 20 d = 10 yi = ⟨θ⋆, xi⟩ + εi X⊤X = I10,εi ∼ 𝒩(0,1)  is 5-sparseθ⋆

• BSS is discontinuous 
• LASSO is piece-wise continuous

For general design, non-zero path not simply a line



LASSO: beyond orthogonal
Again, when the covariates are not orthogonal, an explicit 
solution for the LASSO is not available. Nevertheless, we can 
partially characterise it.
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LASSO: beyond orthogonal
Then, the by the optimality condition  satisfies:̂θS ∈ ℝ|S|

Therefore, the LASSO solution satisfies:

̂θ−S = 0d−|S|
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In particular, note that:

| | ̂θλ | |1 = s⊤
S

̂θS = s⊤
S (X⊤

S XS)−1 X⊤
S y − nλs⊤

S (X⊤
S XS)−1 sS

< | |(X⊤
S XS)−1 X⊤
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It can be shown uniqueness imply  X⊤
S XS ≻ 0

 !!!| | ̂θLASSO | |1 ≤ | | ̂θOLS | |1

̂θS = (X⊤
S XS)−1 (X⊤

S y − nλsS)

X⊤
S (y − XS

̂θS) = nλsS
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LASSO in practice

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ | |θ | |1

Beyond the orthogonal case, the LASSO problem:

does not admit an explicit solution. How do we do in practice?

LASSO = OLS +  penalty ℓ1

Idea: alternate between these two.

θk+1 = Sηλ (θk +
η
n

X⊤(y − Xθk))

Iterative Shrinkage-Thresholding Algorithm (ISTA)



LASSO in practice

n = 10
d = 2

θ⋆ = [1.5
0 ]

yi = ⟨θ⋆, xi⟩ + εi

xi ∼ 𝒩(0,I2)
εi ∼ 𝒩(0,1)

λ = 0.5

η = 0.1
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yi = ⟨θ⋆, xi⟩ + εi
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Elastic Net

min
θ∈ℝd

1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2 + λ1 | |θ | |1 +
λ2

2
| |θ | |2

2

The elastic net algorithm combines ridge with LASSO:

And is particularly suited to the case where the covariate  is 
badly conditioned.

X


