

Statistical Learning II

Lecture 8 - Bias-Variance decomposition (Continued)

Bruno Loureiro

@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

Risk of OLS

Therefore, we have the following final result for the excess risk of OLS

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[\mathcal{R}(\hat{\boldsymbol{\theta}}_{OLS}) \right] - \sigma^2 = \sigma^2 \frac{d}{n}$$

Remarks:

- Excess risk is proportional to the noise level $\mathbb{E}[\varepsilon^2] = \sigma^2$.
- Excess risk is proportional to the data dimension.
- To achieve excess risk $\Delta \mathcal{R} < \delta$, need:

$$n > \frac{\sigma^2 d}{\delta}$$

samples.

Generally, if we have a data generative model for the training data $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^{d+1} : i = 1,...,n\}$:

$$y_i = f_{\star}(x) + \varepsilon_i = \text{signal + noise}$$

With $\mathbb{E}[\varepsilon] = 0$ and $\mathbb{E}[\varepsilon^2] = \sigma^2$

Generally, if we have a data generative model for the training data $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^{d+1} : i = 1,...,n\}$:

$$y_i = f_{\star}(x) + \varepsilon_i = \text{signal + noise}$$

$$\mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\boldsymbol{\hat{\theta}})] - \sigma^2 = \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - f_{\hat{\theta}}(\boldsymbol{x}))^2 \right]$$

Generally, if we have a data generative model for the training data $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^{d+1} : i = 1,...,n\}$:

$$y_i = f_{\star}(x) + \varepsilon_i = \text{signal + noise}$$

$$\mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 = \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right]$$

$$= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right]$$

Generally, if we have a data generative model for the training data $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^{d+1} : i = 1,...,n\}$:

$$y_i = f_{\star}(x) + \varepsilon_i = \text{signal + noise}$$

$$\begin{split} \mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \\ &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \\ &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})])^2 \right] + \mathbb{E}\left[(\mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \end{split}$$

Generally, if we have a data generative model for the training data $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^{d+1} : i = 1,...,n\}$:

$$y_i = f_{\star}(x) + \varepsilon_i = \text{signal + noise}$$

$$\begin{split} \mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \\ &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \\ &= \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})])^2 \right] + \mathbb{E}\left[(\mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2 \right] \\ &= \text{bias}^2 + \text{variance} \end{split}$$

$$\mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 = \mathcal{B} + \mathcal{V}$$

$$\mathcal{B} = \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})])^2\right]$$

$$\mathcal{V} = \mathbb{E}\left[(\mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2\right]$$

$$\mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 = \mathcal{B} + \mathcal{V}$$

$$\mathcal{B} = \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})])^2\right]$$

$$\mathcal{V} = \mathbb{E}\left[(\mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2\right]$$

Recall the the approximation + estimation decomposition from lecture 3:

$$\mathcal{R}(\theta) - \mathcal{R}_\star = \left(\mathcal{R}(\theta) - \inf_{\theta' \in \Theta} \mathcal{R}(\theta')\right) + \left(\inf_{\theta' \in \Theta} \mathcal{R}(\theta') - \mathcal{R}_\star\right)$$

$$\mathbb{E}_{\boldsymbol{\varepsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}})] - \sigma^2 = \mathcal{B} + \mathcal{V}$$

$$\mathcal{B} = \mathbb{E}\left[(f_{\star}(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})])^2\right]$$

$$\mathcal{V} = \mathbb{E}\left[(\mathbb{E}_{\boldsymbol{\varepsilon}}[f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})] - f_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x}))^2\right]$$

Recall the the approximation + estimation decomposition from lecture 3:

$$\mathcal{R}(\theta) - \mathcal{R}_{\star} = \left(\mathcal{R}(\theta) - \inf_{\theta' \in \Theta} \mathcal{R}(\theta')\right) + \left(\inf_{\theta' \in \Theta} \mathcal{R}(\theta') - \mathcal{R}_{\star}\right)$$

For the OLS setting from before (rank(X) = d < n):

$$\mathbb{E}[f_{\hat{\theta}}(\mathbf{x})] = \langle \boldsymbol{\theta}_{\star}, \mathbf{x} \rangle = f_{\star}(\mathbf{x}) \quad \Rightarrow \quad \mathcal{B} = 0 \qquad \mathcal{V} = \sigma^{2} \frac{d}{n}$$

To summarise, the OLS estimator $\hat{\theta}_{OLS}(X, y) = X^+y$:

- Can only fit linear functions.
- For n > d, has low bias $\mathcal{B} = 0$
- When, $n \gg d$, has low variance $\mathscr{V} = \sigma^2 \frac{d}{n}$

To summarise, the OLS estimator $\hat{\theta}_{OLS}(X, y) = X^+y$:

- Can only fit linear functions.
- For n > d, has low bias $\mathcal{B} = 0$
- . When, $n \gg d$, has low variance $\mathscr{V} = \sigma^2 \frac{d}{n}$

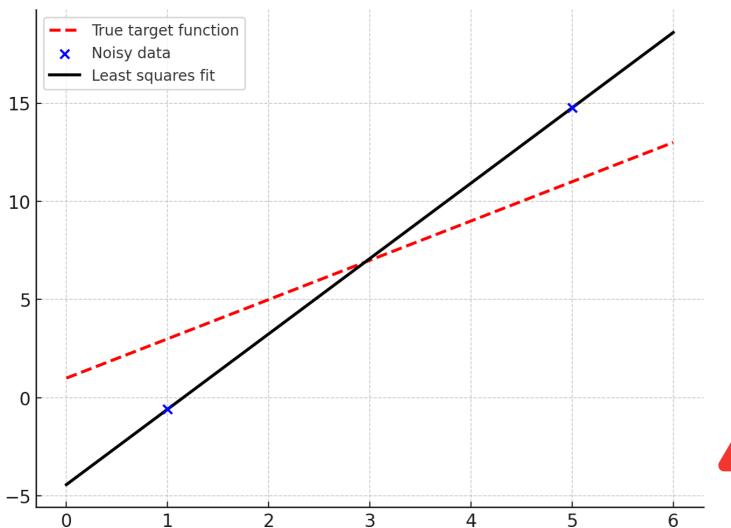
But what about $n \approx d$? Consider for instance n = d.

$$X \in \mathbb{R}^{d \times d}$$
 is invertible $\Rightarrow y = X\hat{\theta}_{OLS}$ interpolates the training data.

But what about $n \approx d$? Consider for instance n = d.

$$X \in \mathbb{R}^{d \times d}$$
 is invertible \Rightarrow $y = X\hat{\theta}_{\text{OLS}}$

interpolates the training data.



$$\mathbb{E}_{\boldsymbol{\epsilon}}[\mathcal{R}(\hat{\boldsymbol{\theta}}_{\text{OLS}})] = 2\sigma^2$$

$$\hat{\mathcal{R}}_n(\hat{\boldsymbol{\theta}}_{\text{OLS}}) = 0$$

The test error above is valid for the fixed design.

Recall that:

$$\hat{\boldsymbol{\theta}}_{OLS}(\boldsymbol{X}, \boldsymbol{y}) = \boldsymbol{\theta}_{\star} + \frac{1}{n} \hat{\boldsymbol{\Sigma}}_{n}^{-1} \boldsymbol{X}^{\top} \boldsymbol{\varepsilon}$$

Recall that:

$$\hat{\boldsymbol{\theta}}_{OLS}(X, \mathbf{y}) = \boldsymbol{\theta}_{\star} + \frac{1}{n} \hat{\boldsymbol{\Sigma}}_{n}^{-1} X^{\mathsf{T}} \boldsymbol{\varepsilon}$$

$$= \boldsymbol{\theta}_{\star} + \sum_{j=1}^{d} \frac{1}{\sigma_{j}} \langle \boldsymbol{u}_{j}, \boldsymbol{\varepsilon} \rangle \boldsymbol{v}_{j}$$

Recall that:

$$\hat{\boldsymbol{\theta}}_{OLS}(X, \mathbf{y}) = \boldsymbol{\theta}_{\star} + \frac{1}{n} \hat{\boldsymbol{\Sigma}}_{n}^{-1} X^{\mathsf{T}} \boldsymbol{\varepsilon}$$

$$= \boldsymbol{\theta}_{\star} + \sum_{j=1}^{d} \frac{1}{\sigma_{j}} \langle \boldsymbol{u}_{j}, \boldsymbol{\varepsilon} \rangle \boldsymbol{v}_{j}$$

Hence: • signal is stronger in directions with larger s.v.

noise dominates directions with smaller s.v.

OLS has larger variance for data with small "effective dimension".

What to do?

Classical strategies to mitigate variance:

- Dimensionality reduction: PCA, random projections (sketching), etc.
- Variable subset selection: Stepwise selection, best Subset Selection, etc.

Regularisation: ridge, LASSO, etc.

Note the averaged norm of the OLS is given by:

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[||\hat{\boldsymbol{\theta}}_{OLS}||_2^2 \right] = ||\boldsymbol{\theta}_{\star}||_2^2 + \sigma^2 \sum_{j=1}^d \frac{1}{\sigma_j^2}$$

Therefore, small s.v.s lead to larger expected norm.

Note the averaged norm of the OLS is given by:

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[||\hat{\boldsymbol{\theta}}_{OLS}||_2^2 \right] = ||\boldsymbol{\theta}_{\star}||_2^2 + \sigma^2 \sum_{j=1}^d \frac{1}{\sigma_j^2}$$

Therefore, small s.v.s lead to larger expected norm.

Key idea: penalise the norm.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

Note the averaged norm of the OLS is given by:

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[||\hat{\boldsymbol{\theta}}_{OLS}||_2^2 \right] = ||\boldsymbol{\theta}_{\star}||_2^2 + \sigma^2 \sum_{j=1}^d \frac{1}{\sigma_j^2}$$

Therefore, small s.v.s lead to larger expected norm.

Key idea: penalise the norm.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

Least squares empirical risk

Regularisation or "ridge" penalty

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

Remarks:

• The regularised empirical risk is a strongly convex function of $\theta \in \mathbb{R}^d$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) + \lambda \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}}^{2} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} > 0$$

$$(= \hat{\boldsymbol{\Sigma}}_{n} + \lambda \boldsymbol{I}_{n})$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

Remarks:

• The regularised empirical risk is a strongly convex function of $\theta \in \mathbb{R}^d$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) + \lambda \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}}^{2} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} > 0$$

$$(= \hat{\boldsymbol{\Sigma}}_{n} + \lambda \boldsymbol{I}_{n})$$

In other words, minimiser always exist and is unique.

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) + \lambda \boldsymbol{\theta} \stackrel{!}{=} \boldsymbol{0}$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) + \lambda \boldsymbol{\theta} \stackrel{!}{=} \boldsymbol{0}$$

$$\updownarrow$$

$$\left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\theta} + \lambda \boldsymbol{I}_{d} \right) \boldsymbol{\theta} \stackrel{!}{=} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_{n}^{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \boldsymbol{X}^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) + \lambda \boldsymbol{\theta} \stackrel{!}{=} \boldsymbol{0}$$

$$\updownarrow$$

$$\left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\theta} + \lambda \boldsymbol{I}_{d} \right) \boldsymbol{\theta} \stackrel{!}{=} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\updownarrow$$

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

The unique solution is given by:

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n^{\lambda}(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

The unique solution is given by:

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

For
$$\lambda \to 0^+$$
, $\hat{\boldsymbol{\theta}}_{\lambda} \to \hat{\boldsymbol{\theta}}_{\mathrm{OLS}}$

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

rank(X)

Remarks: • As before, consider s.v.d. of $X = \sum_{j=1}^{\infty} \sigma_j u_j v_j^{\top}$

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

rank(X)

<u>Remarks:</u> • As before, consider s.v.d. of $X = \sum_{j=1}^{\infty} \sigma_j u_j v_j^{\top}$

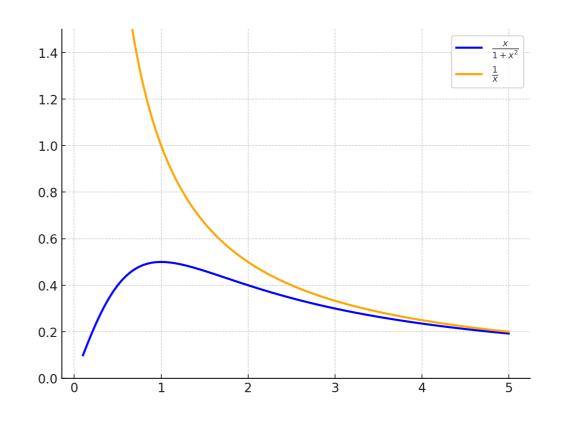
$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \sum_{j=1}^{\operatorname{rank}(\boldsymbol{X})} \frac{\sigma_{j}}{\sigma_{j}^{2} + n\lambda} \langle \boldsymbol{u}_{j}, \boldsymbol{y} \rangle \boldsymbol{v}_{j}$$

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}_{d} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

<u>Remarks:</u> • As before, consider s.v.d. of $X = \sum_{j=1}^{\infty} \sigma_j u_j v_j^{\top}$

$$\hat{\boldsymbol{\theta}}_{\lambda}(\boldsymbol{X}, \boldsymbol{y}) = \sum_{j=1}^{\operatorname{rank}(\boldsymbol{X})} \frac{\sigma_{j}}{\sigma_{j}^{2} + n\lambda} \langle \boldsymbol{u}_{j}, \boldsymbol{y} \rangle \boldsymbol{v}_{j}$$

Ridge performs shrinkage: small s.v.s are suppressed!



rank(X)