

Statistical Learning II

Lecture 6 - Bias-Variance decomposition

Bruno Loureiro

@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

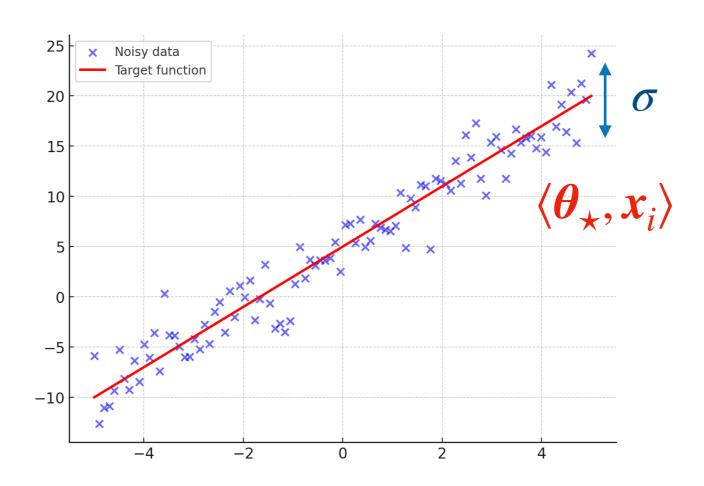
Assumptions

We now assume the following data generative model:

$$y_i = \langle \boldsymbol{\theta}_{\star}, \boldsymbol{x}_i \rangle + \varepsilon_i$$

With: • Fixed $\theta_{\star} \in \mathbb{R}^d$ and $x_i \in \mathbb{R}^d$ "fixed design"

• $\mathbb{E}[\varepsilon_i] = 0$ and $\mathbb{E}[\varepsilon_i^2] = \sigma^2 < \infty$



Decomposition of OLS

Assume $X \in \mathbb{R}^{n \times d}$ is full-rank and n > d:

$$\hat{\boldsymbol{\theta}}_{OLS}(\boldsymbol{X},\boldsymbol{y}) = \boldsymbol{\theta}_{\star} + \frac{1}{n}\hat{\boldsymbol{\Sigma}}_{n}^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\varepsilon}$$
"signal" "noise"

In particular:

• Bias:
$$\mathbb{E}_{\pmb{\varepsilon}}\left[\hat{\pmb{\theta}}_{OLS}(X,y)\right] = \pmb{\theta}_{\star}$$
 "Unbiased"

• Variance:
$$\operatorname{Var}_{\boldsymbol{\varepsilon}} \left[\hat{\boldsymbol{\theta}}_{OLS}(\boldsymbol{X}, \boldsymbol{y}) \right] = \frac{\sigma^2}{n} \hat{\boldsymbol{\Sigma}}_n^{-1}$$

Informally, if $\hat{\Sigma}_n \to \Sigma$ a rank d matrix as $n \to \infty$, then:

$$\hat{\boldsymbol{\theta}}_{OLS} o \boldsymbol{ heta}_{\star}$$
 as $n o \infty$ "Consistency"

Risk of OLS

Therefore, we have the following final result for the excess risk of OLS

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[\mathcal{R}(\hat{\boldsymbol{\theta}}_{OLS}) \right] - \sigma^2 = \sigma^2 \frac{d}{n}$$

Remarks:

- Excess risk is proportional to the noise level $\mathbb{E}[\varepsilon^2] = \sigma^2$.
- Excess risk is proportional to the data dimension.
- To achieve excess risk $\Delta \mathcal{R} < \delta$, need:

$$n > \frac{\sigma^2 d}{\delta}$$

samples.