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Least-squares regression
Let  denote the training data.𝒟 = {(xi, yi) ∈ ℝd × ℝ : i = 1,…, n}

Where we have defined the  data matrix  and label 
vector :

X ∈ ℝn×d

y ∈ ℝn

y =

y1
y2
⋮
yn

min
θ∈ℝd

ℛ̂n(θ) :=
1

2n
| |y − Xθ | |2

2

Ordinary least-squares (OLS) regression is defined as:

X =

− x1 −
− x2 −

⋮
− xn −

∈ ℝn×d



ℛ̂n(θ) :=
1
2n

| |y − Xθ | |2
2

• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd

• Hessian: ∇2
θℛ̂n =

1
n

X⊤X ∈ ℝd×d (:= Σ̂n)

For ,  is strictly convex if and only if . This 
implies that  can have at most one global minimum.

n ≥ d ℛ̂n rank(X⊤X) = d
ℛ̂n

Since ,  is convex over . This implies that any 
minimum of  is a global minimum.

X⊤X ⪰ 0 ℛ̂n ℝd

ℛ̂n

Convexity of OLS



• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd

Explicit solution

If it exists, a minima must satisfy:

∇θℛ̂n
!= 0



• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd
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If  is invertible, unique solution:X⊤X
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• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd

If it exists, a minima must satisfy:

X⊤Xθ = X⊤y∇θℛ̂n
!= 0 ⇔

Explicit solution

̂θ = (X⊤X)−1X⊤y

If  is invertible, unique solution:X⊤X

Note this is consistent with strict convexity of Hessian!

But what if  is not invertible? For example, if  ? X⊤X rank(X) = n < d



Two scenarios
Focus on case  (i.e.  is full-rank)rank(X) = n < d X
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Two scenarios
Focus on case  (i.e.  is full-rank)rank(X) = n < d X

ℝd

X⊤X ∈ ℝd×d

0d

ℝd

ker(X⊤X) im(X⊤X)

Note rank(X) = rank(X⊤X) = rank(XX⊤)

All solutions of  can be written as:X⊤Xθ = X⊤y

̂θ = ̂θ0 + k

Where:  and k ∈ ker(X⊤X) ≃ ℝd−n ̂θ0 ∈ im(X⊤X) ≃ ℝn



̂θ0 = X⊤(XX⊤)−1y

Explicit solution
For , a particular solution of  is:rank(X) = n < d X⊤Xθ = X⊤y

(Check this!)
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(Check this!)

Together, in the full-rank case   solution is:rank(X) = min(n, d)

̂θ = {(X⊤X)−1X⊤y for n ≥ d
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For any .k ∈ ker(X⊤X)



̂θ0 = X⊤(XX⊤)−1y

Explicit solution
For , a particular solution of  is:rank(X) = n < d X⊤Xθ = X⊤y

(Check this!)

Together, in the full-rank case   solution is:rank(X) = min(n, d)

̂θ = {(X⊤X)−1X⊤y for n ≥ d
X⊤(XX⊤)−1y + k for n < d

For any .k ∈ ker(X⊤X)

̂θOLS = X+y

In particular, for  this is the Moore-Penrose inverse:k = 0 ∈ ker(X⊤X)



Geometrical interpretation

ŷOLS = X ̂θOLS = XX+y

This gives a natural interpretation of the OLS predictor as an 
orthogonal projection of the labels in the row space of :X

̂θOLS = X+y ⇒

im(X) ⊂ ℝn

0

y

ŷ = PX⊤ y

min
z∈im(X)

| |y − z | |2
2



OLS as least norm solution

̂θOLS = argmin
θ∈ℝd

| |θ | |2

subject to Xθ = y

Assume  . Then, OLS admits the following 
interpretation as the minimum -norm solution:

rank(X) = n < d
ℓ2
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