

Statistical Learning II

Lecture 5 - Least squares (continued)

Bruno Loureiro

@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

Partiel Wednesday 22/10/2025 08:30 - 10:00

Least-squares regression

Let $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R} : i = 1,...,n\}$ denote the training data.

Ordinary least-squares (OLS) regression is defined as:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

Where we have defined the data matrix $X \in \mathbb{R}^{n \times d}$ and label vector $y \in \mathbb{R}^n$:

$$\boldsymbol{X} = \begin{bmatrix} - & \boldsymbol{x}_1 & - \\ - & \boldsymbol{x}_2 & - \\ \vdots & - & \boldsymbol{x}_n & - \end{bmatrix} \in \mathbb{R}^{n \times d} \qquad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Convexity of OLS

$$\hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

• Hessian:
$$\nabla_{\boldsymbol{\theta}}^2 \hat{\mathcal{R}}_n = \frac{1}{n} X^{\mathsf{T}} X \in \mathbb{R}^{d \times d} \quad (:= \hat{\boldsymbol{\Sigma}}_n)$$

Since $X^TX \ge 0$, $\hat{\mathcal{R}}_n$ is convex over \mathbb{R}^d . This implies that any minimum of $\hat{\mathcal{R}}_n$ is a global minimum.

For $n \ge d$, $\hat{\mathcal{R}}_n$ is strictly convex if and only if $\operatorname{rank}(X^TX) = d$. This implies that $\hat{\mathcal{R}}_n$ can have at most one global minimum.

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

If it exists, a minima must satisfy:

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n \stackrel{!}{=} 0$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

If it exists, a minima must satisfy:

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

If it exists, a minima must satisfy:

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

If X^TX is invertible, unique solution:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

If it exists, a minima must satisfy:

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

If X^TX is invertible, unique solution:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

Note this is consistent with strict convexity of Hessian!

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

If it exists, a minima must satisfy:

$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

If X^TX is invertible, unique solution:

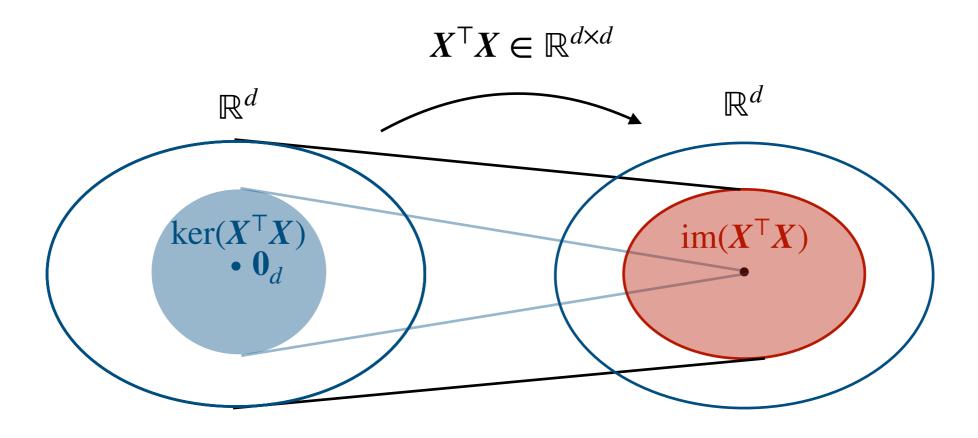
$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

Note this is consistent with strict convexity of Hessian!

But what if X^TX is not invertible? For example, if rank(X) = n < d?

Two scenarios

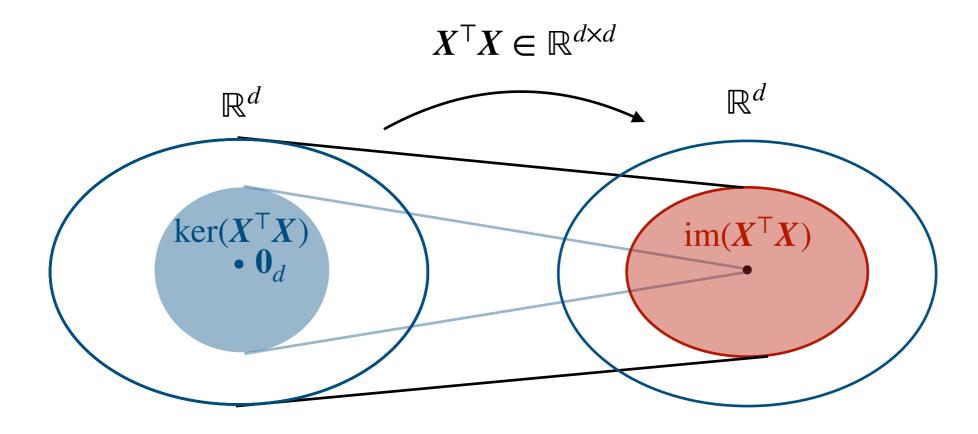
Focus on case rank(X) = n < d (i.e. X is full-rank)



Note $rank(X) = rank(X^T X) = rank(X X^T)$

Two scenarios

Focus on case rank(X) = n < d (i.e. X is full-rank)



Note $rank(X) = rank(X^T X) = rank(XX^T)$

All solutions of $X^{T}X\theta = X^{T}y$ can be written as:

$$\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}_0 + \boldsymbol{k}$$

Where: $k \in \ker(X^{\top}X) \simeq \mathbb{R}^{d-n}$ and $\hat{\theta}_0 \in \operatorname{im}(X^{\top}X) \simeq \mathbb{R}^n$

For rank(X) = n < d, a particular solution of $X^{T}X\theta = X^{T}y$ is:

$$\hat{\boldsymbol{\theta}}_0 = \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}})^{-1} \boldsymbol{y} \qquad \text{(Check this!)}$$

For rank(X) = n < d, a particular solution of $X^{T}X\theta = X^{T}y$ is:

$$\hat{\boldsymbol{\theta}}_0 = \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}})^{-1} \boldsymbol{y} \qquad \text{(Check this!)}$$

Together, in the full-rank case rank(X) = min(n, d) solution is:

$$\hat{\boldsymbol{\theta}} = \begin{cases} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} & \text{for } n \ge d \\ \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}})^{-1} \boldsymbol{y} + \boldsymbol{k} & \text{for } n < d \end{cases}$$

For any $k \in \ker(X^T X)$.

For rank(X) = n < d, a particular solution of $X^{T}X\theta = X^{T}y$ is:

$$\hat{\boldsymbol{\theta}}_0 = \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}})^{-1} \boldsymbol{y} \qquad \text{(Check this!)}$$

Together, in the full-rank case rank(X) = min(n, d) solution is:

$$\hat{\boldsymbol{\theta}} = \begin{cases} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} & \text{for } n \ge d \\ \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}})^{-1} \boldsymbol{y} + \boldsymbol{k} & \text{for } n < d \end{cases}$$

For any $k \in \ker(X^T X)$.

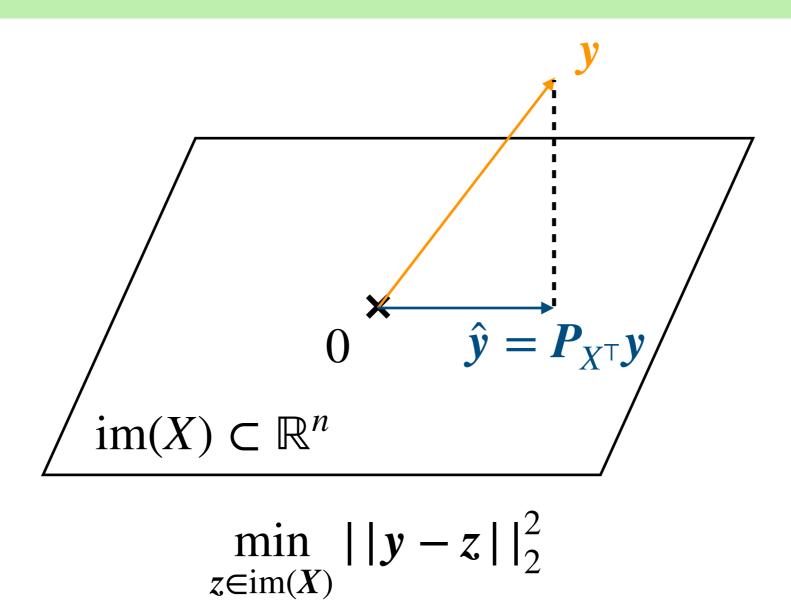
In particular, for $k = 0 \in \ker(X^T X)$ this is the Moore-Penrose inverse:

$$\hat{\boldsymbol{\theta}}_{\mathrm{OLS}} = X^{+}y$$

Geometrical interpretation

This gives a natural interpretation of the OLS predictor as an orthogonal projection of the labels in the row space of X:

$$\hat{\boldsymbol{\theta}}_{OLS} = X^{+}y$$
 \Rightarrow $\hat{\boldsymbol{y}}_{OLS} = X\hat{\boldsymbol{\theta}}_{OLS} = XX^{+}y$



Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\theta} \in \mathbb{R}^d$ denote a different solution from $\hat{\theta}_{OLS}$.

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then: $\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= 0$$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{\|m{ heta}\|_2} \|m{ heta}\|_2$$
 subject to $Xm{ heta} = y$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= 0$$

Therefore $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} \perp \hat{\boldsymbol{\theta}}_{OLS}$.

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{\|m{ heta}\|_2} \|m{ heta}\|_2$$
 subject to $Xm{ heta} = y$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= 0$$

Therefore $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} \perp \hat{\boldsymbol{\theta}}_{OLS}$. Hence:

$$||\hat{\boldsymbol{\theta}}||_2^2 = ||\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} + \hat{\boldsymbol{\theta}}_{OLS}||_2^2$$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= 0$$

Therefore $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} \perp \hat{\boldsymbol{\theta}}_{OLS}$. Hence:

$$||\hat{\boldsymbol{\theta}}||_{2}^{2} = ||\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} + \hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2} = ||\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2} + ||\hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2}$$

Assume $\operatorname{rank}(X) = n < d$. Then, OLS admits the following interpretation as the minimum ℓ_2 -norm solution:

$$\hat{m{ heta}}_{OLS} = \mathop{\mathrm{argmin}}_{m{ heta} \in \mathbb{R}^d} ||m{ heta}||_2$$
 subject to $m{X}m{ heta} = m{y}$

<u>Proof:</u> Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^d$ denote a different solution from $\hat{\boldsymbol{\theta}}_{OLS}$.

Then:
$$\langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \hat{\boldsymbol{\theta}}_{OLS} \rangle = \langle \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}, \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{X} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}), (\boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y} \rangle$$

$$= 0$$

Therefore $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} \perp \hat{\boldsymbol{\theta}}_{OLS}$. Hence:

$$||\hat{\boldsymbol{\theta}}||_{2}^{2} = ||\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS} + \hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2} = ||\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2} + ||\hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2} \ge ||\hat{\boldsymbol{\theta}}_{OLS}||_{2}^{2}$$