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Least-squares regression

Let D = {(x,y,) € RIXR :i=1,...,n} denote the training data.
Ordinary least-squares (OLS) regression Is defined as:

R 1
min £ (0) .= — — X0
min 2,(6) := 51y — X0}

Where we have defined the data matrix X € R™ and label
vectory € R"



Convexity of OLS

A 1
R ,(0) :=%\|y—X0H§

Va\

1
. Gradient: VA, = — —X'(y — X0) € R?
n

A | ~
. Hessian: Vg%n =—X'X e R™ (:=X)
n

Since XX = 0, %, is convex over R% This implies that any
mMminimum of &, is a global minimum.

Forn >d, é?fn is strictly convex if and only if rank(X'X) = d. This
iImplies that £, can have at most one global minimum.



Explicit solution
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Q

But what if X'X is not invertible? For example, if rank(X) =n < d ?



TwO scenarios

Focus on case rank(X) = n < d (l.e. X Is full-rank)

XT X Rdxd

R4 /\ R4
ker(X 'X)
- 0, =

A Note rank(X) = rank(XTX) = rank(XXT)




TwO scenarios

Focus on case rank(X) = n < d (1.e. X is full-rank)

XT X Rdxd
Rd

T R4
kcr(XTD <D
-0, i

A Note rank(X) = rank(XTX) = rank(XXT)

All solutions of X'X0 = X'y can be written as:
0 — 00 ~+ k

Where: k € ker(X'X) ~ R*" and , € im(X"X) ~ R"
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For rank(X) = n < d, a particular solution of X'X0 = X'y is:

0,=X"(XX")y (Check this!)



Explicit solution

For rank(X) = n < d, a particular solution of X'X0 = X'y is:
0,=X"(XX")"y (Check this!)

Together, In the full-rank case rank(X) = min(n, d) solution is:

) XTX)7Xy for n > d
X' XX ly+k forn<d

For any k € ker(X ' X).



Explicit solution

For rank(X) = n < d, a particular solution of X'X0 = X'y is:
0,=X"(XX")"y (Check this!)

Together, In the full-rank case rank(X) = min(n, d) solution is:

X'X)" X'y for n > d
X' XX ly+k forn<d

>

For any k € ker(X ' X).

In particular, for k = 0 € ker(X'X) this is the Moore-Penrose inverse:

Oors =X Ty



Geometrical interpretation

This gives a natural interpretation of the OLS predictor as an
orthogonal projection of the labels in the row space of X:

Oors =Xy = Vors = X0o15 = XXy

im(X) C R”

- 2
min ||y —z][5
zeim(X)



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

HOLS argmin | [6]],
OcR?

subjectto X0 =y

Proof: Let# € R?denote a different solution from @,




OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let 6 € R? denote a dif

‘erent solution from 6, .

Then: <é — éOLS’ éOLS> — <é — éOLSa XT(XXT)_1y>



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let 6 € R? denote a dif

‘erent solution from 6, .

Then: <é — éOLS’ éOLS> — <é — éOLS; XT(XXT)_1y>
= (X(é — éOLS)a (XXT)_1Y>



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let 6 € R? denote a dif

‘erent solution from 6, .

Then: <é — éOLS’ éOLS> — <é — éOLS; XT(XXT)_1y>
= (X(é — éOLS)a (XXT)_1Y>

=0



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let 6 € R? denote a dif

‘erent solution from 6, .

Then: <é — éOLS’ éOLS> — <é — éOLS; XT(XXT)_1y>
= (X(é — éOLS)a (XXT)_1Y>

=0

Therefore@—-0,,,10,,



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let 6 € R? denote a dif

‘erent solution from 6, .

Then: <é — éOLS’ éOLS> — <é — éOLS; XT(XXT)_1y>
= (X(é — éOLS)a (XXT)_1Y>

=0

Therefore-0,,, 1 0,,, Hence:

N2 N 1 2 2
O =110=00,5+ 005115



OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let# € R?denote a different solution from @,
Then: <H — HOLS’ HOLS> — <0 — 00LS; XT(XXT)_1y>

= (X0 —0,,5), XXT)"'y)
=0

Therefore-0,,, 1 0,,, Hence:

N2 N 1 2 2 N 0 2 2 2
O3 =110=00,5+ 05| [5=110=0051 15+ 1005113




OLS as least norm solution

Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:

Oprs = argmin | |6]],
HcR?

subjectto X0 =y

Proof: Let# € R?denote a different solution from @,
Then: <H — HOLS’ HOLS> — <0 — 00L5‘9 XT(XXT)_1y>

= (X0 —0,,5), XXT)"'y)
=0

Therefore-0,,, 1 0,,, Hence:

N2 N 1 2 2 N 0 2 2 2 2 2
O3 =110=00,5+ 0015l [5=110=0051 15+ 1005115 2 11005115




