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Summary of ERM
Let  denote training data 
sampled i.i.d. from 

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Given a choice of:

min
θ∈Θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi))

• Parametric hypothesis class ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ}

• Loss function ℓ : 𝒳 × 𝒴 → ℝ+

Empirical Risk Minimisation consists of:  
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Is typically a non-convex function of .θ ∈ Θ

• How large  needs to be (with respect to ) so that  
 has low training and/or test error? 
n p, d

̂θ ∈ argmin F(θ)

• What properties of the data distribution  makes the 
problem easier / harder? 

p
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Least-squares regression
Let  denote the training data.𝒟 = {(xi, yi) ∈ ℝd × ℝ : i = 1,…, n}

Ordinary least-squares (OLS) regression is defined as:

min
θ∈ℝd

ℛ̂n(θ) :=
1
2n

n

∑
i=1

(yi − ⟨θ, xi⟩)2



Least-squares regression
Let  denote the training data.𝒟 = {(xi, yi) ∈ ℝd × ℝ : i = 1,…, n}

Where we have defined the  data matrix  and label 
vector :

X ∈ ℝn×d

y ∈ ℝn

y =

y1
y2
⋮
yn

min
θ∈ℝd

ℛ̂n(θ) :=
1

2n
| |y − Xθ | |2

2

Ordinary least-squares (OLS) regression is defined as:

X =

− x1 −
− x2 −

⋮
− xn −

∈ ℝn×d



Bayes risk for OLS
Remarks:

• This corresponds to an ERM problem on the class 
of linear functions: 

ℋ = {fθ(x) = ⟨θ, x⟩ : θ ∈ ℝd}

with the square loss functions:

ℓ(y, fθ(x)) =
1
2 (y − fθ(x))2



Remarks:

• This corresponds to an ERM problem on the class 
of linear functions: 

ℋ = {fθ(x) = ⟨θ, x⟩ : θ ∈ ℝd}

with the square loss functions:

ℓ(y, fθ(x)) =
1
2 (y − fθ(x))2

• The Bayes predictor and risk are given by:

ℛ⋆ = 𝔼 [ 1
2

(y − 𝔼[y |x])2]f⋆(x) = 𝔼[y |x] Exercise:  
show this.

Bayes risk for OLS



Intercept
Remarks:

• Without loss of generality, can add an intercept:

fθ(x) = ⟨θ, x⟩ + b

By redefining:

X̃ =

− x1 − 1
− x2 − 1

⋮
− xn − 1

∈ ℝn×(d+1)



Inductive bias of OLS
Remarks:

• Inductive bias: can only fit affine functions of x ∈ ℝd

x

y

fθ(x) = θx + b



Convexity of OLS

ℛ̂n(θ) :=
1
2n

| |y − Xθ | |2
2

• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd
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• Gradient: ∇θℛ̂n = −
1
n

X⊤(y − Xθ) ∈ ℝd

• Hessian: ∇2
θℛ̂n =

1
n

X⊤X ∈ ℝd×d (:= Σ̂n)

For ,  is strictly convex if and only if . This 
implies that  can have at most one global minimum.

n ≥ d ℛ̂n rank(X⊤X) = d
ℛ̂n

Since ,  is convex over . This implies that any 
minimum of  is a global minimum.

X⊤X ⪰ 0 ℛ̂n ℝd

ℛ̂n

Convexity of OLS


