

Statistical Learning II

Lecture 4 - Least squares

Bruno Loureiro

@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

Summary of ERM

Let $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : i = 1,...,n\}$ denote training data sampled i.i.d. from p.

Given a choice of:

- Parametric hypothesis class $\mathcal{H} = \{f_{\theta} : \mathcal{X} \to \mathcal{Y} : \theta \in \Theta\}$
- Loss function $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$

Empirical Risk Minimisation consists of:

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

Summary of ERM

Let $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : i = 1,...,n\}$ denote training data sampled i.i.d. from p.

Given a choice of:

- Parametric hypothesis class $\mathcal{H} = \{f_{\theta} : \mathcal{X} \to \mathcal{Y} : \theta \in \Theta\}$
- Loss function $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$

Empirical Risk Minimisation consists of:

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

Key questions

What optimisation procedure to choose?

$$F(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

Is typically a non-convex function of $\theta \in \Theta$.

Key questions

What optimisation procedure to choose?

$$F(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

Is typically a non-convex function of $\theta \in \Theta$.

• How large n needs to be (with respect to p, d) so that $\hat{\theta} \in \operatorname{argmin} F(\theta)$ has low training and/or test error?

Key questions

What optimisation procedure to choose?

$$F(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

Is typically a non-convex function of $\theta \in \Theta$.

- How large n needs to be (with respect to p, d) so that $\hat{\theta} \in \operatorname{argmin} F(\theta)$ has low training and/or test error?
- What properties of the data distribution p makes the problem easier / harder?

Least-squares regression

Least-squares regression

Let $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R} : i = 1,...,n\}$ denote the training data.

Ordinary least-squares (OLS) regression is defined as:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} \sum_{i=1}^n \left(y_i - \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle \right)^2$$

Least-squares regression

Let $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R} : i = 1,...,n\}$ denote the training data.

Ordinary least-squares (OLS) regression is defined as:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

Where we have defined the data matrix $X \in \mathbb{R}^{n \times d}$ and label vector $y \in \mathbb{R}^n$:

$$\boldsymbol{X} = \begin{bmatrix} - & \boldsymbol{x}_1 & - \\ - & \boldsymbol{x}_2 & - \\ \vdots & - & \boldsymbol{x}_n & - \end{bmatrix} \in \mathbb{R}^{n \times d} \qquad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Bayes risk for OLS

Remarks:

 This corresponds to an ERM problem on the class of linear functions:

$$\mathcal{H} = \{ f_{\theta}(\mathbf{x}) = \langle \boldsymbol{\theta}, \mathbf{x} \rangle : \boldsymbol{\theta} \in \mathbb{R}^d \}$$

with the square loss functions:

$$\mathcal{E}(y, f_{\theta}(\mathbf{x})) = \frac{1}{2} \left(y - f_{\theta}(\mathbf{x}) \right)^{2}$$

Bayes risk for OLS

Remarks:

 This corresponds to an ERM problem on the class of linear functions:

$$\mathcal{H} = \{ f_{\theta}(\mathbf{x}) = \langle \boldsymbol{\theta}, \mathbf{x} \rangle : \boldsymbol{\theta} \in \mathbb{R}^d \}$$

with the square loss functions:

$$\mathcal{E}(y, f_{\theta}(\mathbf{x})) = \frac{1}{2} \left(y - f_{\theta}(\mathbf{x}) \right)^{2}$$

The Bayes predictor and risk are given by:

$$f_{\star}(x) = \mathbb{E}[y \mid x]$$
 $\mathscr{R}_{\star} = \mathbb{E}\left[\frac{1}{2}(y - \mathbb{E}[y \mid x])^2\right]$ Exercise: show this.

Intercept

Remarks:

· Without loss of generality, can add an intercept:

$$f_{\theta}(\mathbf{x}) = \langle \mathbf{\theta}, \mathbf{x} \rangle + b$$

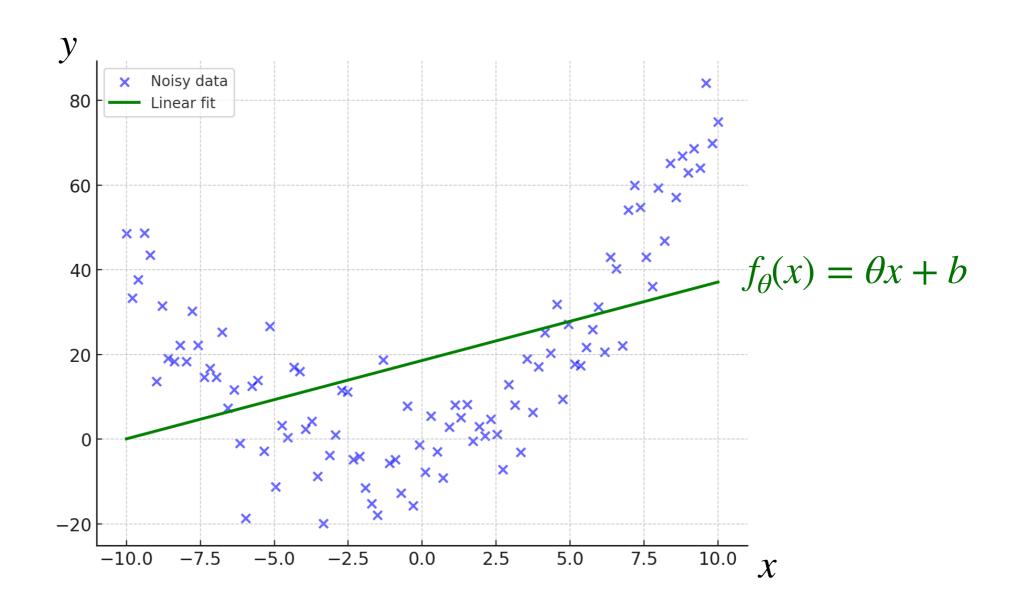
By redefining:

$$\tilde{X} = \begin{bmatrix} - & x_1 & - & 1 \\ - & x_2 & - & 1 \\ \vdots & & & \\ - & x_n & - & 1 \end{bmatrix} \in \mathbb{R}^{n \times (d+1)}$$

Inductive bias of OLS

Remarks:

• Inductive bias: can only fit affine functions of $x \in \mathbb{R}^d$



$$\hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

$$\hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

• Hessian:
$$\nabla_{\boldsymbol{\theta}}^2 \hat{\mathcal{R}}_n = \frac{1}{n} X^{\mathsf{T}} X \in \mathbb{R}^{d \times d} \quad (:= \hat{\boldsymbol{\Sigma}}_n)$$

$$\hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

• Hessian:
$$\nabla_{\boldsymbol{\theta}}^2 \hat{\mathcal{R}}_n = \frac{1}{n} X^{\mathsf{T}} X \in \mathbb{R}^{d \times d} \quad (:= \hat{\boldsymbol{\Sigma}}_n)$$

Since $X^TX \ge 0$, $\hat{\mathcal{R}}_n$ is convex over \mathbb{R}^d . This implies that any minimum of $\hat{\mathcal{R}}_n$ is a global minimum.

$$\hat{\mathcal{R}}_n(\boldsymbol{\theta}) := \frac{1}{2n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||_2^2$$

• Gradient:
$$\nabla_{\boldsymbol{\theta}} \hat{\mathcal{R}}_n = -\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) \in \mathbb{R}^d$$

• Hessian:
$$\nabla_{\boldsymbol{\theta}}^2 \hat{\mathcal{R}}_n = \frac{1}{n} X^{\mathsf{T}} X \in \mathbb{R}^{d \times d} \quad (:= \hat{\boldsymbol{\Sigma}}_n)$$

Since $X^TX \ge 0$, $\hat{\mathcal{R}}_n$ is convex over \mathbb{R}^d . This implies that any minimum of $\hat{\mathcal{R}}_n$ is a global minimum.

For $n \ge d$, $\hat{\mathcal{R}}_n$ is strictly convex if and only if $\operatorname{rank}(X^TX) = d$. This implies that $\hat{\mathcal{R}}_n$ can have at most one global minimum.