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Empirical risk
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

Given a loss function , and a predictor 
define the empirical risk:

ℓ : 𝒴 × 𝒴 → ℝ+ f : 𝒳 → 𝒴

ℛ̂n( f ) =
1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the training loss. This quantifies how well we fit 
the data. But is this a good notion of learning?

f(x) = {yi if x ∈ 𝒟
0 otherwise

⇒ ℛ̂n = 0
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Probabilistic framework
Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution  over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

• The “i.i.d.” assumption might not always hold. 
(Sampling bias, distribution shift, etc.)

• Under this assumption,  is a random function.ℛ̂n



Population risk
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Define the notion of population risk of a predictor :f : 𝒳 → 𝒴
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Also known as the generalisation or test error.

 is a deterministic function of the predictor ℛ f

Population risk



Validation set
In practice, the statistician almost never has access to the 
data distribution.

A common procedure to estimate  consists of splitting the 
training data in training and validation set . 

ℛ
𝒟 = 𝒟T ∪ 𝒟V

Train on , test on .𝒟T 𝒟V



Validation set
In practice, the statistician almost never has access to the 
data distribution.

A common procedure to estimate  consists of splitting the 
training data in training and validation set . 

ℛ
𝒟 = 𝒟T ∪ 𝒟V

Train on , test on .𝒟T 𝒟V

To reduce error, often one repeats this procedure  times, 
averaging over the result. This is known as  fold cross-validation.

k
k



Conditional risk
Given the data distribution  and a loss function , we can 
decompose the risk:

p ℓ
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Given the data distribution  and a loss function , we can 
decompose the risk:

p ℓ

= 𝔼X∼px [𝔼[ℓ(Y, f(x)) |X = x]]
ℛ( f ) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

The internal expectation is over the conditional 
distribution Y |X = x

Conditional risk



Given the data distribution  and a loss function , we can 
decompose the risk:

p ℓ
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Given the data distribution  and a loss function , we can 
decompose the risk:

p ℓ

= 𝔼X∼px [r(z |X)]

r(z |x) = 𝔼[ℓ(Y, z) |X = x]

“Conditional risk”

Where we have defined:

ℛ( f ) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

Conditional risk



The Bayes predictor is the best achievable predictor:
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The Bayes predictor is the best achievable predictor:

Bayes risk

f⋆(x) ∈ argmin
z∈𝒴

r(z |x)

And is also known as the target function.

Similarly, the Bayes risk is the best achievable risk:

ℛ⋆ = 𝔼X∼px [ inf
z∈𝒴

r(z |X)]
• The Bayes predictor  might not be unique.f⋆

• Typically we have .ℛ⋆ ≠ 0 Examples in the TD



Learning algorithm

A learning algorithm is a map that takes the training data 
and returns a predictor

𝒜 : 𝒟p ↦ f

Let  denote training data 
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Learning algorithm
Let  denote training data 
sampled i.i.d. from 

𝒟p = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

A learning algorithm is a map that takes the training data 
and returns a predictor

You have seen many examples in “Statistical Learning I”:

• K-nearest neighbours 
• Decision trees 
• Random Forests 
• Least-squares regression

𝒜 : 𝒟p ↦ f



Theorem

No free lunch
Consider a binary classification task with  and 0/1 
loss . Let  denote the set of probability 
distributions over .

𝒴 = {0,1}
ℓ(y, z) = δyz 𝒫

𝒳 × {0,1}

sup
p∈𝒫

{𝔼 [ℛ(𝒜(𝒟p))] − ℛ⋆} ≥
1
2

For any  and algorithm  over , there 
exists  such that

n ∈ ℕ 𝒜 (𝒳 × {0,1})⊗n

p ∈ 𝒫



Theorem

No free lunch
Consider a binary classification task with  and 0/1 
loss . Let  denote the set of probability 
distributions over .

𝒴 = {0,1}
ℓ(y, z) = δyz 𝒫

𝒳 × {0,1}

For any  and algorithm  over , there 
exists  such that

n ∈ ℕ 𝒜 (𝒳 × {0,1})⊗n

p ∈ 𝒫

sup
p∈𝒫

{𝔼 [ℛ(𝒜(𝒟p))] − ℛ⋆} ≥
1
2

In words: For any algorithm you choose, one can always 
construct a data distribution such that your error is at best 
equal than random guessing.



Empirical risk minimisation
Let  denote training data 
sampled i.i.d. from 

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Empirical risk minimisation (ERM) is a class of learning 
algorithms that consist of minimising the empirical risk:
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f
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Empirical risk minimisation
Let  denote training data 
sampled i.i.d. from 

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Empirical risk minimisation (ERM) is a class of learning 
algorithms that consist of minimising the empirical risk:

min
f

1
n

n

∑
i=1

ℓ(yi, f(xi)) ( = ℛ̂n( f ))

By the law of large numbers, for a given f

ℛ̂n( f ) P→ ℛ( f ) as n → ∞

However, at fixed ,  can be very different from n ℛ̂n ℛ
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Empirical risk minimisation

ERM maps supervised learning to an optimisation problem.

( = ℛ̂n( f ))

But optimising on the space of functions is computationally 
intractable…. 

Therefore, we restrict to classes of mathematically and 
computationally amenable functions:

f ∈ ℋ

min
f∈ℋ

1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the hypothesis class. 
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Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Examples: • Linear functions:

• Two layer neural network: 

fθ(x) = ⟨θ, x⟩ + b

fθ(x) =
p

∑
j=1

ajσ (⟨wj, x⟩ + b)

• Generalised Linear functions: fθ(x) = σ (⟨θ, x⟩ + b)

The choice of hypothesis (or architecture) induces 
an inductive bias in the learning.

e.g. linear functions can only learn linear relationships



Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + ( inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
Estimation error Approximation error
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Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + ( inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
• Approximation error

- Independent of n

- Typically decreasing with  (to  if  rich enough)|Θ | 0 ℋ

• Estimation error

 - Deterministic

 - Typically Random

ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)

- Typically decreasing with n

inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆



Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + ( inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)

Figure from “Learning Theory from First Principles”, F. Bach 2024



Summary of ERM
Let  denote training data 
sampled i.i.d. from 
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Key questions

• What optimisation procedure to choose?

F(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))

Is typically a non-convex function of .θ ∈ Θ

• How large  needs to be (with respect to ) so that  
 has low training and/or test error? 
n p, d

̂θ ∈ argmin F(θ)

• What properties of the data distribution  makes the 
problem easier / harder? 

p


