
Statistical Learning II
Lecture 3 - supervised learning (continued)

Bruno Loureiro
@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

DL3 IASO, Université Paris Dauphine-PSL
24.09.2025

mailto:brloureiro@gmail.com

Empirical risk
Let denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

Given a loss function , and a predictor
define the empirical risk:

ℓ : 𝒴 × 𝒴 → ℝ+ f : 𝒳 → 𝒴

ℛ̂n(f) =
1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the training loss. This quantifies how well we fit
the data. But is this a good notion of learning?

f(x) = {yi if x ∈ 𝒟
0 otherwise

⇒ ℛ̂n = 0

Probabilistic framework
Instead, we would like predictors that do well on unseen data.

Probabilistic framework
Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

Probabilistic framework
Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

• The “i.i.d.” assumption might not always hold.
(Sampling bias, distribution shift, etc.)

• Under this assumption, is a random function.ℛ̂n

Population risk
Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

Define the notion of population risk of a predictor :f : 𝒳 → 𝒴

ℛ(f) = 𝔼 [ℓ(y, f(x))]
Also known as the generalisation or test error.

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

Define the notion of population risk of a predictor :f : 𝒳 → 𝒴

ℛ(f) = 𝔼 [ℓ(y, f(x))]
Also known as the generalisation or test error.

 is a deterministic function of the predictor ℛ f

Population risk

Validation set
In practice, the statistician almost never has access to the
data distribution.

A common procedure to estimate consists of splitting the
training data in training and validation set .

ℛ
𝒟 = 𝒟T ∪ 𝒟V

Train on , test on .𝒟T 𝒟V

Validation set
In practice, the statistician almost never has access to the
data distribution.

A common procedure to estimate consists of splitting the
training data in training and validation set .

ℛ
𝒟 = 𝒟T ∪ 𝒟V

Train on , test on .𝒟T 𝒟V

To reduce error, often one repeats this procedure times,
averaging over the result. This is known as fold cross-validation.

k
k

Conditional risk
Given the data distribution and a loss function , we can
decompose the risk:

p ℓ

ℛ(f) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

Given the data distribution and a loss function , we can
decompose the risk:

p ℓ

= 𝔼X∼px [𝔼[ℓ(Y, f(x)) |X = x]]
ℛ(f) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

The internal expectation is over the conditional
distribution Y |X = x

Conditional risk

Given the data distribution and a loss function , we can
decompose the risk:

p ℓ

= 𝔼X∼px [𝔼[ℓ(Y, f(x)) |X = x]]
“Conditional risk”

ℛ(f) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

Conditional risk

Given the data distribution and a loss function , we can
decompose the risk:

p ℓ

= 𝔼X∼px [r(z |X)]

r(z |x) = 𝔼[ℓ(Y, z) |X = x]

“Conditional risk”

Where we have defined:

ℛ(f) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

Conditional risk

The Bayes predictor is the best achievable predictor:

Bayes risk

f⋆(x) ∈ argmin
z∈𝒴

r(z |x)

And is also known as the target function.

The Bayes predictor is the best achievable predictor:

Bayes risk

f⋆(x) ∈ argmin
z∈𝒴

r(z |x)

And is also known as the target function.

Similarly, the Bayes risk is the best achievable risk:

ℛ⋆ = 𝔼X∼px [inf
z∈𝒴

r(z |X)]

The Bayes predictor is the best achievable predictor:

Bayes risk

f⋆(x) ∈ argmin
z∈𝒴

r(z |x)

And is also known as the target function.

Similarly, the Bayes risk is the best achievable risk:

ℛ⋆ = 𝔼X∼px [inf
z∈𝒴

r(z |X)]
• The Bayes predictor might not be unique.f⋆

• Typically we have .ℛ⋆ ≠ 0 Examples in the TD

Learning algorithm

A learning algorithm is a map that takes the training data
and returns a predictor

𝒜 : 𝒟p ↦ f

Let denote training data
sampled i.i.d. from

𝒟p = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Learning algorithm
Let denote training data
sampled i.i.d. from

𝒟p = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

A learning algorithm is a map that takes the training data
and returns a predictor

You have seen many examples in “Statistical Learning I”:

• K-nearest neighbours
• Decision trees
• Random Forests
• Least-squares regression

𝒜 : 𝒟p ↦ f

Theorem

No free lunch
Consider a binary classification task with and 0/1
loss . Let denote the set of probability
distributions over .

𝒴 = {0,1}
ℓ(y, z) = δyz 𝒫

𝒳 × {0,1}

sup
p∈𝒫

{𝔼 [ℛ(𝒜(𝒟p))] − ℛ⋆} ≥
1
2

For any and algorithm over , there
exists such that

n ∈ ℕ 𝒜 (𝒳 × {0,1})⊗n

p ∈ 𝒫

Theorem

No free lunch
Consider a binary classification task with and 0/1
loss . Let denote the set of probability
distributions over .

𝒴 = {0,1}
ℓ(y, z) = δyz 𝒫

𝒳 × {0,1}

For any and algorithm over , there
exists such that

n ∈ ℕ 𝒜 (𝒳 × {0,1})⊗n

p ∈ 𝒫

sup
p∈𝒫

{𝔼 [ℛ(𝒜(𝒟p))] − ℛ⋆} ≥
1
2

In words: For any algorithm you choose, one can always
construct a data distribution such that your error is at best
equal than random guessing.

Empirical risk minimisation
Let denote training data
sampled i.i.d. from

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Empirical risk minimisation (ERM) is a class of learning
algorithms that consist of minimising the empirical risk:

min
f

1
n

n

∑
i=1

ℓ(yi, f(xi)) (= ℛ̂n(f))

Empirical risk minimisation
Let denote training data
sampled i.i.d. from

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Empirical risk minimisation (ERM) is a class of learning
algorithms that consist of minimising the empirical risk:

min
f

1
n

n

∑
i=1

ℓ(yi, f(xi)) (= ℛ̂n(f))

By the law of large numbers, for a given f

ℛ̂n(f) P→ ℛ(f) as n → ∞

However, at fixed , can be very different from n ℛ̂n ℛ

Empirical risk minimisation

ERM maps supervised learning to an optimisation problem.

min
f

1
n

n

∑
i=1

ℓ(yi, f(xi)) (= ℛ̂n(f))

Empirical risk minimisation

ERM maps supervised learning to an optimisation problem.

min
f

1
n

n

∑
i=1

ℓ(yi, f(xi)) (= ℛ̂n(f))

But optimising on the space of functions is computationally
intractable….

Empirical risk minimisation

ERM maps supervised learning to an optimisation problem.

(= ℛ̂n(f))

But optimising on the space of functions is computationally
intractable….

Therefore, we restrict to classes of mathematically and
computationally amenable functions:

f ∈ ℋ

min
f∈ℋ

1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the hypothesis class.

Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Examples: • Linear functions: fθ(x) = ⟨θ, x⟩ + b

Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Examples: • Linear functions: fθ(x) = ⟨θ, x⟩ + b

• Generalised Linear functions: fθ(x) = σ (⟨θ, x⟩ + b)

Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Examples: • Linear functions:

• Two layer neural network:

fθ(x) = ⟨θ, x⟩ + b

fθ(x) =
p

∑
j=1

ajσ (⟨wj, x⟩ + b)

• Generalised Linear functions: fθ(x) = σ (⟨θ, x⟩ + b)

Hypothesis class
Most of the time, we consider parametric classes.

ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ ⊂ ℝp}

Examples: • Linear functions:

• Two layer neural network:

fθ(x) = ⟨θ, x⟩ + b

fθ(x) =
p

∑
j=1

ajσ (⟨wj, x⟩ + b)

• Generalised Linear functions: fθ(x) = σ (⟨θ, x⟩ + b)

The choice of hypothesis (or architecture) induces
an inductive bias in the learning.

e.g. linear functions can only learn linear relationships

Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + (inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
Estimation error Approximation error

Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + (inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
• Approximation error

- Independent of n

- Typically decreasing with (to if rich enough)|Θ | 0 ℋ

 - Deterministic

inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆

Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + (inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
• Approximation error

- Independent of n

- Typically decreasing with (to if rich enough)|Θ | 0 ℋ

• Estimation error

 - Deterministic

 - Typically Random

ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)

- Typically decreasing with n

inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆

Risk decomposition
For any , we can decompose the excess risk:θ ∈ Θ

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + (inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)

Figure from “Learning Theory from First Principles”, F. Bach 2024

Summary of ERM
Let denote training data
sampled i.i.d. from

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Given a choice of:

min
θ∈Θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi))

• Parametric hypothesis class ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ}

• Loss function ℓ : 𝒳 × 𝒴 → ℝ+

Empirical Risk Minimisation consists of:

Summary of ERM
Let denote training data
sampled i.i.d. from

𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}
p .

Given a choice of:

min
θ∈Θ

1
n

n

∑
i=1

ℓ(yi, fθ(xi))

• Parametric hypothesis class ℋ = {fθ : 𝒳 → 𝒴 : θ ∈ Θ}

• Loss function ℓ : 𝒳 × 𝒴 → ℝ+

Empirical Risk Minimisation consists of:

Key questions

• What optimisation procedure to choose?

F(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))

Is typically a non-convex function of .θ ∈ Θ

Key questions

• What optimisation procedure to choose?

F(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))

Is typically a non-convex function of .θ ∈ Θ

• How large needs to be (with respect to) so that
 has low training and/or test error?
n p, d

̂θ ∈ argmin F(θ)

Key questions

• What optimisation procedure to choose?

F(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))

Is typically a non-convex function of .θ ∈ Θ

• How large needs to be (with respect to) so that
 has low training and/or test error?
n p, d

̂θ ∈ argmin F(θ)

• What properties of the data distribution makes the
problem easier / harder?

p

