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Empirical risk

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Given a lossfunction 7 : ¥ x % - R,,and a predictorf: & - %
define the empirical risk:

A |
Rof) == D C 0 S)
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Also known as the training loss. This qguantifies how well we fit
the data. But is this a good notion of learning?

f(X)={yi txes R =0

>

0O otherwise
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Probabilistic framework

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

A . The “l.i.d." assumption might not always hold.
(Sampling bias, distribution shift, etc.)

. Under this assumption, &, is a random function.
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Population risk

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

Define the notion of population risk of a predictor f: & - ¥

R(f) = E [£(y, f(x))]

Also known as the generalisation or test error.

A R 1s a deterministic function of the predictor f



Validation set

INn practice, the statistician almost never has access to the
data distribution.

A common procedure to estimate &% consists of splitting the
training data in training and validation set 9 = 9. U 9.

Train on 9, test on Y.



Validation set

INn practice, the statistician almost never has access to the
data distribution.

A common procedure to estimate &% consists of splitting the
training data in training and validation set 9 = 9. U 9.

Train on 9, test on Y.

To reduce error, often one repeats this procedure k times,
averaging over the result. This is known as k fold cross-validation.
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Conditional risk

Given the data distribution p and a loss function ¢, we can
decompose the risk:
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The Internal expectation is over the conditional
distribution Y| X =x
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Conditional risk

Given the data distribution p and a loss function ¢, we can
decompose the risk:

R(f) = Exyp[£(Y, fOO)]

= Ex., |rz|X)]

Where we have defined:

r(z]x) =E[£(Y,2) | X = x]

“Conditional risk”
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The Bayes predictor Is the best achievable predictor:

fi(x) € argmin r(z | x)
IEY

And is also known as the target function.
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And is also known as the target function.

Similarly, the Bayes risk is the best achievable risk:

R =Ex., Liél; r(z\X)]



Bayes risk

The Bayes predictor Is

the best achievable predictor:

fi(x) € argmin r(z | x)

AnNd Is also known as t

Similarly, the Bayes ris

IEY

ne target function.

< IS the best achievable risk:

K, =Ex., [inf r(z\X)]

. Typically we

X

IEY

A - The Bayes predictor f, might not be unique.

have #, #0. (&) Examplesin the TD



Learning algorithm

Let D, ={(x, W ET XY i=1,...,n} denote training data
sampled L.id. from p.

A learning algorithm is a map that takes the training data
and returns a predictor
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Learning algorithm

Let D, ={(x, W ET XY i=1,...,n} denote training data
sampled L.id. from p.

A learning algorithm is a map that takes the training data
and returns a predictor

A:D,~f
You have seen many examples in “Statistical Learning 1"

. K-nearest neighbours

. Decision trees

. Random Forests

. Least-squares regression




No free lunch

Consider a binary classification task with % = {0,1} and O/1
loss £(y, z) = 6,,. Let & denote the set of probability

distributions over & x {0,1}.

For any n € N and algorithm & over (2 x {0,1})®", there
exists p € & such that

up { E | R((,)| - 2, | 2

pEL
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No free lunch

Consider a binary classification task with % = {0,1} and O/1
loss £(y, z) = 6,,. Let & denote the set of probability

distributions over & x {0,1}.

For any n € N and algorithm & over (2 x {0,1})®", there
exists p € & such that

up { E | R((,)| - 2, | 2

pEL

1
2

In words: For any algorithm you choose, one can always
construct a data distribution such that your error is at best
equal than random guessing.




Empirical risk minimisation

let D ={(x,y) €T XY :i=1,...,n} denote training data
sampled i.i.d. from p.

Empirical risk minimisation (ERM) is a class of learning
algorithms that consist of minimising the empirical risk:
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Empirical risk minimisation

let D ={(x,y) €T XY :i=1,...,n} denote training data
sampled i.i.d. from p.

Empirical risk minimisation (ERM) is a class of learning
algorithms that consist of minimising the empirical risk:

1 % A
min — 2 L0 @) (= R,()
=1

A By the law of large numbers, for a given f

Rf) > R(f) @ n—

However, at fixed n, §?n can be very different from %
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ERM maps supervised learning to an optimisation problem.
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Empirical risk minimisation

min —Zf(y,,f(x)) (= R,(f)

fe# n

ERM maps supervised learning to an optimisation problem.

But optimising on the space of functions is computationally
INntractable....

Therefore, we restrict to classes of mathematically and
computationally amenable functions:

fe X

Also known as the hypothesis class.
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Hypothesis class

Most of the time, we consider parametric classes.

H={fg: X =Y :0€0CR

Examples: . Linear functions: fy(x) =(0,x)+ b

. Generalised Linear functions: fy(x) =o¢ ((H,x) + b)

P
- Two layer neural network:  f,(x) = Z ao <(wj,x> + b)
j=1

The choice of hypothesis (or architecture) induces
an inductive bias in the learning.

A

e.g. linear functions can only learn linear relationships



Risk decomposition

For any 6 € ®, we can decompose the excess risk:

RO) — R, = (9@2(9) — inf 9?3(9')) + ( inf Z(0) — 932*)
0'c® 0'c®

Estimation error Approximation error
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For any 6 € ®, we can decompose the excess risk:

RO) — R, = (9@2(9) — inf 9?3(9’)) + ( inf Z(0) — 935*)
0'c® 0'cO

. Approximation error int RO)— A,
0'cO
- Independent of n

- Deterministic

- Typically decreasing with |®]| (to 0 If #Z rich enough)

. Estimation error R(O) — inf A(0)
0'c®
- Typically Random

- Typically decreasing with n



Risk decomposition

For any 6 € ®, we can decompose the excess risk:

RO) — R, = (9@2(9) — inf 9?3(9’)) + ( inf R(0) — 9@)
0'c® 0'c®

Errors
A

Underfitting — <— Overfitting

Test

Train

> “Size” of ©

Figure from “Learning Theory from First Principles”, F. Bach 2024



Summary of ERM

let D ={(x,y) €T XY :i=1,...,n} denote training data
sampled i.i.d. from p.

Given a choice of:

« Parametric hypothesisclass#Z ={f,: & - % : 0 € O}
» Lossfunction?: I'x¥% — R,

Empirical Risk Minimisation consists of:

min — 2 £ fx)

0e® n
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Key questions

- What optimisation procedure to choose?
1 n
FO) =~ ) £0nffo)
i=1

Is typically a non-convex function of 9 € 6.

- How large n needs to be (with respect to p, d) so that
6 € argmin F(0) has low training and/or test error?

- What properties of the data distribution p makes the
poroblem easier / harder?



