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Menu for the semester

• Classical methods:

• Ridge regression 
• LASSO 
• Generalised linear models 
• Kernel methods  
• Principal component analysis (PCA) 

• Modern methods:

• Neural networks 
• Diffusion models 
• Your suggestions?

Goal: Develop a mathematical understanding of 
classical and modern machine learning models



Introduction & Motivation
Or: why should I care about Statistical Learning?
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Leo Breiman 
1928
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Some good reasons to care

• Reliability and Liability 

If a model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicine, law, self-
driving cars/planes… 

• Efficient design

Can we design models and algorithms that learn more 
efficiently from data? 

Data centres are responsible for 4% of the energy 
consumption in the US. 

• Scientific curiosity

• And in the worst case, understanding the maths will 
make you a better engineer / data scientist.
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Our expectations

My expectations: By the end of the term, I expect you to:

• Get acquainted with the most popular 
machine learning algorithms

• Appreciate (some) of the mathematics 
behind the methods.

• Be able to implement these methods from 
scratch. 

Your expectations: Let’s make a quick survey!
https://forms.gle/nhTyc3pHHiKgTJg9A
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• The input space  is often assumed to be 
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in real life it can be any data structure 
(e.g. a pandas.DataFrame)

𝒳
𝒳 ⊂ ℝd
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𝒴
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• In particular, if  is a discrete set, we 
say we have a classification problem.

|𝒴 | = k

• If  is a continuous set, we say we have a 
regression problem
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It is very common to consider a one-hot  
encoding  in classification.𝒴 = {0,1}k
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• Temperature prediction 
, 𝒳 = ℝ3 𝒴 = ℝ

Examples of regression:

• Stock price prediction 
, 𝒳 = {list of stocks} 𝒴 = ℝ+

• Life expectancy 
, 𝒳 = {medical data} 𝒴 = ℝ+

• Any price, cost, income, etc. prediction.
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In supervised learning, our goal is to use the data to learn a 
function that correctly assigns the labels to the responses.

f : 𝒳 → 𝒴

For classification, it is common to define instead: 

f : 𝒳 → [0,1]|𝒴|

Where  is a vector of class probabilities. In this case, 
final prediction is given by:

f(x)

̂y = argmax
k∈|𝒴|

f(x)
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Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

In supervised learning, our goal is to use the data to learn a 
function that correctly assigns the labels to the responses.

f : 𝒳 → 𝒴

Two key words: correctly and learn. To quantify the first, it is 
common to introduce a loss function:

ℓ : 𝒴 × 𝒴 → ℝ+

For classification this will also depend on the 
encoding.

Loss function
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• Square loss: ℓ(y, z) =
1
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Regression losses
Examples in regression:

• Huber loss: ℓδ(y, z) =
1
2 (y − z)2 if | |y − z | ≤ δ

δ( |y − z | − 1
2 δ) if |y − z | > δ



Classification losses
Examples in binary classification :𝒴 = {−1, + 1}

• 0/1 loss: ℓ(y, z) = δyz

• Logistic loss: ℓ(y, z) = log(1 + e−yz)

• Hinge loss: ℓ(y, z) = max(0,1 − yz)

(or )ℓ(y, z) = θ(y − z) = {1 if y − z ≤ 0
0 otherwise
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Empirical risk
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

Given a loss function , and a predictor 
define the empirical risk:

ℓ : 𝒴 × 𝒴 → ℝ+ f : 𝒳 → 𝒴

ℛ̂n( f ) =
1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the training loss. This quantifies how well we fit 
the data. But is this a good notion of learning?

f(x) = {yi if x ∈ 𝒟
0 otherwise

⇒ ℛ̂n = 0
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Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution  over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

• The “i.i.d.” assumption might not always hold. 
(Sampling bias, distribution shift, etc.)

• Under this assumption,  is a random function.ℛ̂n
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Assume there is an underlying data distribution  over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

Define the notion of population risk of a predictor :f : 𝒳 → 𝒴

ℛ( f ) = 𝔼 [ℓ(y, f(x))]
Also known as the generalisation or test error.

 is a deterministic function of the predictor ℛ f

Population risk
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Validation set
In practice, the statistician almost never has access to the 
data distribution.

A common procedure to estimate  consists of splitting the 
training data in training and validation set . 

ℛ
𝒟 = 𝒟T ∪ 𝒟V

Train on , test on .𝒟T 𝒟V

To reduce error, often one repeats this procedure  times, 
averaging over the result. This is known as  fold cross-validation.

k
k
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The internal expectation is over the conditional 
distribution Y |X = x
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Given the data distribution  and a loss function , we can 
decompose the risk:

p ℓ

= 𝔼X∼px [r(z |X)]

r(z |x) = 𝔼[ℓ(Y, z) |X = x]

“Conditional risk”

Where we have defined:

ℛ( f ) = 𝔼(X,Y)∼p[ℓ(Y, f(X))]

Conditional risk

z = f(x) ∈ 𝒴
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The Bayes predictor is the best achievable predictor:

Bayes risk

f⋆(x) ∈ argmin
z∈𝒴

r(z |x)

And is also known as the target function.

Similarly, the Bayes risk is the best achievable risk:

ℛ⋆ = 𝔼X∼px [ inf
z∈𝒴

r(z |X)]
• The Bayes predictor  might not be unique.f⋆

• Typically we have .ℛ⋆ ≠ 0 Examples in the TD


