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. Evaluation: Partiel (25%) + Final (75%)
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Menu for the semester

Goal: Develop a mathematical understanding of
classical and modern machine learning models

. Classical methods:

- Ridge regression

. LASSO

- Generalised linear models

- Kernel methods

- Principal component analysis (PCA)

- Modern methods:

- Neural networks
- Diffusion models
- Your suggestions?



Introduction & Motivation

Or: why should | care about Statistical Learning?
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What about the maths?

Yet, on the mathematical side...

Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Leo Breiman
1928
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What about the maths?

Yet, on the mathematical side...

Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo @stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Leo Breiman
1928

This was written in 1995!!

But why should | care?
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Some good reasons to care

- Reliability and Liability

If @ model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicineg, law, self-
driving cars/planes...

. Efficient design

Data centres are responsible for 4% of the energy
consumption in the US.

Can we design models and algorithms that learn more
efficiently from data?

. Scientific curiosity

. And in the worst case, understanding the maths will
make you a better engineer / data scientist.
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Our expectations

My expectations: By the end of the term, | expect you to:

. Get acquainted with the most popular
machine learning algorithms

. Appreciate (some) of the mathematics
behind the methods.

- Be able to implement these methods from
scratch.

Your expectations: Let's make a quick survey!
https://forms.gle/nhTyc3pHHIKgTJg9A
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let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

. The input space & Is often assumed to be
a vector space I c RY. But keep in mind

IN real life it can be any data structure
(e.g. a pandas.DataFrame)

- The output space % is often assumed to
be a subset ¥ C R.

- In particular, if |%| =k is a discrete set, we
say we have a classification problem.

. If % Is a continuous set, we say we have a
regression problem

It Is very commmon to consider a one-hot
encoding ¥ = {0,1}* in classification.

A




Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Examples of classification:

« Grumpy vs. Non-grumpy cats
Z = {photos of cats}, ¥ = {grumpy, not grumpy }

E-mail spam detection
2 = {your inbox }, ¥ = {spam, not spam}

Medical diagnosis
2 = {medical data}, ¥ = {diseases}

. Sentiment analysis
X = {text}, ¥ = {positive, negative, neutral }



Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Examples of regression:

. Temperature prediction
=R’ % =R

. Stock price prediction
A = {list of stocks}, =R,

Life expectancy
A = {medical data}, ¥ =R,

- ANy price, cost, iIncome, etc. prediction.
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INn supervised learning, our goal is to use the data to learn a
function that correctly assigns the labels to the responses.
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A For classification, it Iscommon to define instead:

f: I - 10,1117

Where f(x) is a vector of class probabilities. In this case,
final prediction is given by:

y = argmax f(x)
kel |
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| 0ss function

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

INn supervised learning, our goal is to use the data to learn a
function that correctly assigns the labels to the responses.

f:d—Y

Two key words: correctly and learn. To quantify the first, it is
common to introduce a loss function:

CrY XY =Ry

Q For classification this will also depend on the
encoding.
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. Square loss: £(y,7) = E(y — 2)?

: _ : e Exercise:
A The square loss Is sensitive to outliers @/

=’ show this.
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Regression losses

Examples in regression:

1
. Square loss: #(y, 7) = E(y — 2)?

. Absolute loss: €(y,2) = |y — z|

— 3y =y
— ly-vl
ot ——— True valuey

1 1 1 1 1 1 1
-2 -1 0 1 2 3 4
Predicted Value y



Regression losses

Examples in regression:

S(y = 2)? if [|y—z <6

. Huber loss: Z5(y,z) = i .
5(|y—Z|—35) if |y—z[>6

1
4.0 Huber Loss (6 = 0.5)
—— Huber Loss (6 = 1)
3.5} —— Huber Loss (6 = 2)
-— True value y

Predicted Value y



Classification losses

Examples in binary classification % = {—1,+ 1}:
Il ty—2z<0
0 otherwise

. O1loss: #(y,2)=6,, (or £(y,2) =0y —2) = { )
. Logistic loss: #(y, z) = log(1 + e™%)

- Hinge loss: £(y, z) = max(0,1 — yz)

I
3.0f : —— 0/1 Loss
| —— Logistic Loss
Hinge Loss
2.5 Tru lue y
2.0
a
3 1.5
1.0
) \\
0.0 \
1 1 I
-2 -1 0 1 2 3 4
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Empirical risk

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Given a lossfunction 7 : ¥ x % - R,,and a predictorf: & - %
define the empirical risk:

A |
Rof) == D C 0 S)
=1

Also known as the training loss. This qguantifies how well we fit
the data. But is this a good notion of learning?

f(X)={yi txes R =0

>

0O otherwise
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Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

A . The “l.i.d." assumption might not always hold.
(Sampling bias, distribution shift, etc.)

. Under this assumption, &, is a random function.
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Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

Define the notion of population risk of a predictor f: & - ¥

R(f) = E [£(y, f(x))]

Also known as the generalisation or test error.

A R 1s a deterministic function of the predictor f
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Validation set

INn practice, the statistician almost never has access to the
data distribution.

A common procedure to estimate &% consists of splitting the
training data in training and validation set 9 = 9. U 9.

Train on 9, test on Y.

To reduce error, often one repeats this procedure k times,
averaging over the result. This is known as k fold cross-validation.

Training Sets Test Set
) A

Iteration 1 Ly Erron

—

Iteration 2 —» Error,

5
. 1
Iteration 3 L » ErTor; L_ Error = gz Error;
i=1

Iteration 4 _» Errorn,

Iteration 5 L » Error

_—
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Conditional risk

Given the data distribution p and a loss function ¢, we can
decompose the risk:

R(f) = Exy)plf (Y, (X))
=Ey., [rzlX)| zz=f0e¥

Where we have defined:

r(z]x) =E[£(Y,2) | X = x]

“Conditional risk”
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Bayes risk

The Bayes predictor Is

the best achievable predictor:

fi(x) € argmin r(z | x)

AnNd Is also known as t

Similarly, the Bayes ris

IEY

ne target function.

< IS the best achievable risk:

K, =Ex., [inf r(z\X)]

. Typically we

X

IEY

A - The Bayes predictor f, might not be unique.

have #, #0. (&) Examplesin the TD



