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Recap of
Linear Algebra

The bread of statistical learning




The Euclidean space

The Euclidean space R4 s the vector space of d-tuples:

X1

X
x=|"7|er! R

“column vector”
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The Euclidean space

The Euclidean space R4 s the vector space of d-tuples:

A1
A9
X = = Rd (Rdxl)
x.d “‘column vector”

Recall, R4 s a vector space of dimension d with basis:

0 Position i

e




The Euclidean space

The Euclidean space is endowed with an inner (or scalar) product
d

u,v € R? (u,v) = Z U;vi
i=1



The Euclidean space

The Euclidean space is endowed with an inner (or scalar) product

d
u,v € R? (u,v) = Z U;vi
i=1

Which induces a natural notion of distance and size:
d
2 2
|3 = (uu)= D) u?  duv)=]|lu—v||
=1
“Euclidean or £, norm” “Euclidean distance”

We say two vectors u,v € R? are orthogonal if (u,v) =0



Euclidean geometry

d
2 2
ull; = (@uy= Y w2 dwv)=|lu-v||
=1

“Euclidean or £, norm” “Euclidean distance”

They correspond to our intuitive notion of geometry in the plane
Uu

»

E _ 2

0 du,v) = [lu—-vll[5
V o

(u,v)
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Euclidean geometry

They correspond to our intuitive notion of geometry in the plane

U

S
dw,v) = ||u—v||?
0 ' ’ 2

0, ;

P ¥

05(6) — (u,v)
[aull,][v]],

INn particular, we say two vectorsu,y € R4 are orthogonal if

u ,
(u,v) =0




Other norms

One can define other notions of size in R?

J 1/p
||u||p=(2u;’> p>1

i=1 ¥4 17
fp norm



Other norms

One can define other notions of size in R?

J 1/p
||u||,,=(2u;’> p>1

i=1 {l 17
fp norm

- is Not associated to an inner product for p # 2
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Other norms

One can define other notions of size in R?

J 1/p
||u||,,=(2u;’> p>1

=1

£, norm
A |- ] \p is not associated to an inner product for p # 2
A . A A A

)

N,
N

2 £



Matrices

A real-valued matrix A € R™4is 3 table of real numbers.

dip 4 0 4

n
thy dpp Uy

A — . . . . e R”Xd
Ap1 G 0 Uyg



Matrices

A real-valued matrix A € R™4is 3 table of real numbers.

dip dip 0 Ay

ry dyp =
A — . . . ." ERnxd

App Gpp 0 Gy

It Is most often used to describe the coordinates of linear
transformations A : R4 - R” with respect to a basis.

R4 A

R" 7
L //\ / \Ov / V; = Z%‘“j
0, " =1




Matrices

A real-valued matrix A € R™4is 3 table of real numbers.

dip dyp - g

n
ry dpyp =+ oy,

A = . . . . = RnXd
A 0 g

A A Ay
. The columns of A € R"™ are vectors A; € R" with (A); = a;

“Column space” col(A) = span(4,, ---,A,)) C R"



Matrices

A real-valued matrix A € R™4is 3 table of real numbers.

dip dip 0 Ay
ayy Qyy = Ay, | 2

a

Uyl Uyp 0 Uy 4,

. The columns of A € R"™ are vectors A; € R" with (A); = a;

“Column space” col(A) = span(4,, ---,A,)) C R"

. The rows of A € R™ are vectors a; € R with (@); = a;

“Row space” of row(A) = span(a,, :*+,a,) C R4



Flattening matrices

The space of matrices A € R™4 s itself a vector

space of dimension nd. Therefore we can identify:

Rnxd ~ Rnd

By flattening the matrices into vectors.

i
A =

|

r1 dpy

i

a1y 50)
a :

. aln

a4ya 253



Rank of a matrix

. The rank of a matrix A € R™ s the dimension of column space
rank(A) = dim(col(A))

This is equivalent to the number of iIndependent columns.



Rank of a matrix

. The rank of a matrix A € R™ s the dimension of column space
rank(A) = dim(col(A))

This is equivalent to the number of iIndependent columns.

rank(A) = dim(col(A)) = dim(row(A))



Rank of a matrix

. The rank of a matrix A € R™ s the dimension of column space
rank(A) = dim(col(A))

This is equivalent to the number of iIndependent columns.

rank(A) = dim(col(A)) = dim(row(A))

. AmatrixA € R™4 s said to be full-rank if

rank(A) = min(n, d)



Another point of view

. Alternatively, we can see the column space col(A) C R" as
The image of the associated linear map.

im(A) = col(A) = {v € R" : Au = v for some u € RY)



Another point of view

. Alternatively, we can see the column space col(A) C R" as
The image of the associated linear map.

im(A) = col(A) = {v € R" : Au = v for some u € RY)

Rnxd

. The null-space or kernel of a matrixA € Is defined as:

ker(A) = {u € R?: Au = 0)

Q Note that ker(4) c R¢
and 0 € ker(A)



lmage and null-space

Let A € R™4 denote a linear map. We have:
rank(A) + dim(ker(A)) = n




Matrix inverse

A square matrix A € R%4 s said to be invertible if there exists
B € R4 sych that:

In this case, we denote B = A1,



Matrix inverse

A square matrix A € R%4 s said to be invertible if there exists
B € R4 sych that:

In this case, we denote B = A1,

For any invertible matrix A € R4

AH ' =A.




Matrix inverse

A square matrix A € R%4 s said to be invertible if there exists
B € R4 sych that:

In this case, we denote B = A1,

For any invertible matrix A € R4

AH ' =A.

A square matrix A € R4 s invertible
It and only if it is full-rank

rank(A) = d



Matrix inverse

A sgquare matrixA € R4 s invertible

If and only if it is full-rank

rank(A) = d

A € Rxd

RY T~ im@) = R




Matrix transpose

RnXd

. The transpose of a matrixA € with elements

a; the matrix with AT € R with elements a;

v

A =




Matrix transpose

. The transpose of a matrix A € R4 with elements

a; the matrix with AT € R with elements a;

- -

.+ We have: (AT)T — A
(@A +bB)' =aA' + bB'
(A—I)T — (AT)—I
(AB)! = B'A'" (@) Exercise: check this.




Matrix transpose

Rnxd

. The transpose of a matrixA € with elements

a; the matrix with AT € R with elements a;

- -

. Note that by seeingu,v € R 535 column vectors,
we can also write the Euclidean inner product as:

(u, V) — uTv @ Exercise: check this.



Matrix trace

Rdxd

. The trace of a square matrix A € IS the sum of

Its diagonal:
d
=1



Matrix trace

. The trace of a square matrix A € R4 is the sum of
Its diagonal:
d
=1

. Itsatisfiess Tr AB = Tr BA

Tr (aA +bB)=alr A+ bIr B
TrA'=Tr A

(2F) Exercise: check this.




Symmetric matrices

Rdxd

. Asguare matrixA € is symmetricifA' = A



Symmetric matrices

. Asguare matrix A € R4 is symmetricifAT = A

A

ForanyA e R ATA € R™and AAT € R™" are
symmetric matrices.




Symmetric matrices

. Asguare matrix A € R4 is symmetricifAT = A

A

Letting @; € R? denote the rows of A € R"™4, we have:

ForanyA e R ATA € R™and AAT € R™" are
symmetric matrices.

(AA T)ij = (a; aj)

@ Exercise: check this.

Note: a similar representation holds for columns of A



Orthogonal matrices

. Asguare matrixA € R s orthogonal if AT = A~!



Orthogonal matrices

. Asguare matrixA € R s orthogonal if AT = A~!

Orthogonal matrices preserve the norm and
distance between vectors (they are isometries):

‘ ‘Au ‘ ‘2 — ‘ ‘u ‘ ‘2 @ Exercise: check this.



Orthogonal matrices

. Asguare matrixA € R s orthogonal if AT = A~!

Orthogonal matrices preserve the norm and
distance between vectors (they are isometries):

‘ ‘Au ‘ ‘2 — ‘ ‘u ‘ ‘2 @) Exercise: check this.

Geometrically, they define rotations




Projection matrix

. Asguare matrixA € R4 s 3 projection ifA* = A

Moreover, if A is also orthogonal, we call it a
orthogonal projection.

S

S = O
o O




Projection matrix

. Asguare matrixA € R4 s 3 projection ifA* = A

Moreover, if A is also orthogonal, we call it a
orthogonal projection.

Any vy € R4 can be uniguely written as:

vy =u+ Ay u € ker(A)



Projection matrix

Rdxd

. Asguare matrixA € is a projection ifA? = A

Moreover, if A is also orthogonal, we call it a
orthogonal projection.

Any vy € R4 can be uniguely written as:

vy =u+ Ay u € ker(A)

Q The only projection matrix which is invertible is the
identity.



Eigen-(values, vectors)

Llet A € R denote a sgquare matrix. An eigenvector Is a vector
that is only re-scaled under the action of A:

Ay = Ay

Where 4 € R is known as an eigenvalue.



Eigen-(values, vectors)

Llet A € R denote a sgquare matrix. An eigenvector Is a vector
that is only re-scaled under the action of A:

Ay = Ay

Where 4 € R is known as an eigenvalue.

We call the set of eigenvalues the spectrum of A:

spec(A) = {1 € R : Av = v}




Eigen-(values, vectors)

Llet A € R denote a sgquare matrix. An eigenvector Is a vector
that is only re-scaled under the action of A:

Ay = Ay

Where 4 € R is known as an eigenvalue.

We call the set of eigenvalues the spectrum of A:

spec(A) = {1 € R : Av = v}

Rdxd

. Asquare matrixA € can have at most d

Q Independent eigenvectors.

. An eigenvalue A can be associated to more than one
Independent eigenvector.



Positive matrices

. Asguare matrix A € R4 s called positive definite if all
eigenvalues are positive:

A€ spec(A) => 41> 0



Positive matrices

. Asguare matrixA € R

eigenvalues are positive:

Is called positive definite if all

A€ spec(A) => 41> 0

. Asguare matrixA € R4 s called positive semi-definite if all

eigenvalues are non-negative:

A €espec(A) =>1>0



Positive matrices

. Asguare matrix A € R4 s called positive definite if all
eigenvalues are positive:

A€ spec(A) => 41> 0

. Asguare matrixA € R4 s called positive semi-definite if all
eigenvalues are non-negative:

A €espec(A) =>1>0

Symmetric matrices A € R4 gre positive semi-definite

@ Exercise: prove this.




Positive matrices

. Asguare matrix A € R4 s called positive definite if all
eigenvalues are positive:

A€ spec(A) => 41> 0

. Asguare matrixA € R4 s called positive semi-definite if all
eigenvalues are non-negative:

A €espec(A) =>1>0

Symmetric matrices A € R4 gre positive semi-definite

: - . )* ) Exercise: prove this.
A Nnot necessarily positive definite. @/ P



Spectral theorem

Any symmetric matrix A € R4 can be decomposed as
A=UDU'

U € R are orthogonal matrices and D is a diagonal matrix
with elements given by the eigenvalues.



Spectral theorem

Any symmetric matrix A € R4 can be decomposed as
A=UDU'

U € R are orthogonal matrices and D is a diagonal matrix
with elements given by the eigenvalues.

We can equivalently write the spectral decomposition as:

rank(A)
=1

Wherev; € R4 are orthonormal eigenvectors.



Important facts

Rdxd

. The trace of a symmetric matrix A € Is the sum of its

eigenvalues
d
i=1



Important facts

. The trace of a symmetric matrix A € R4 s the sum of its
eigenvalues
d
Tr A = Z A;
i=1

. Asquare matrixA € R*js invertible i.ff. 0 & spec(A)



Important facts

Rdxd

. The trace of a symmetric matrix A € Is the sum of its

eigenvalues
d
i=1

. Asquare matrixA € R*js invertible i.ff. 0 & spec(A)

. The eigenvalues of a projection matrix P € R4 3re 0 or 1

rank(P)

P = Z Vl-Vl-T G:/ Exercise: show this.
=1

Moreover, P € R4Xd g orthogonal if v; are orthogonal vectors.



Singular value decomposition

Note that for any real matrixA € R ATA € R%>4 3nd
AA" € R™" are a symmetric matrices.



Singular value decomposition

Note that for any real matrixA € R ATA € R%>4 3nd
AA" € R™" are a symmetric matrices.

Therefore, ATA and AA "can be diagonalised:

ATA = z”: Avy! AA" = 2 A
=1 i=1

Where: r =rank(A'A) = rank(AA ")
u, € R" v € R are orthonormal vectors.

2> 0



Singular value decomposition

Note that for any real matrixA € R ATA € R%>4 3nd
AA" € R™" are a symmetric matrices.

Therefore, ATA and AA "can be diagonalised:

ATA = z”: Avy! AA" = 2 A
=1 i=1

Where: r =rank(A'A) = rank(AA ")
u, € R" v € R are orthonormal vectors.

2> 0

Therefore, defining the singular values o; = \/Z



Singular value decomposition

Any real matrix A € R™“ can be decomposed as
rank(A)

_ T
A = 2 CUY;
i=1



Singular value decomposition

Rnxd

Any real matrix A € can be decomposed as

This can be equivalently written as:

A =UDV'
With: U € R™" and V € R orthogonal matrices

D € R™4 3 rectangular matrix with the singular values O;



Singular value decomposition

Rnxd

Any real matrix A € can be decomposed as

This can be equivalently written as:

A =UDV'
With: U € R™ and V € R¥“ orthogonal matrices

D € R™4 3 rectangular matrix with the singular values o;

Computationally, it is more efficient to define
UcR™ VeR»andD € R™




Pseudo-inverse

The SVD allow us to define a generalised notion of
matrix inverse. Let A € R™4 with SVD:

The pseudo-inverse AT € R is defined via its SVD:

rank(A) 1
T

AT = —Vu.

O:
=1 !



Pseudo-inverse

The pseudo-inverse AT & R is defined via its SVD:

rank(A) 1
_ T
AT = 2 ;viui

i=1
't satisfies: AATA =A ATAAT=A"
AT =A
IfA isinvertible AT = A1

ATAAT  iftn>d

fA is full-rank, AT =
'S TUH=rant, {AT(AAT)—lAT ifn<d

@ Exercise: show this.




Pseudo-inverse

The pseudo-inverse is useful to define orthogonal projectors

For any real matrix A € R™¢.

ATA Rdxd AAT € RN @; Exercise:

show this.

Define orthogonal projection operators in the column
and row space of A, respectively.



Pseudo-inverse

The pseudo-inverse is useful to define orthogonal projectors

For any real matrix A € R™¢.

@ Exercise:

A+A = RdXd AA+ S R show this.

Define orthogonal projection operators in the column
and row space of A, respectively.

Similarly,
T _AtA e R™ [ AAY € R

Define orthogonal projection operators in the kernel of A
and A" respectively.



Recap of
Probability

The butter of statistical learning




Random variable

A random variable X mathematically formalises the notion of
a “measurement’” or “random event’.



Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Discrete: when the possible outcomes are countable.

Examples: + the outcome of tossing a coin X € {head, tail}
. rollingadiceX € {1,...,6}

. The number of people in France X € N



Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Discrete: when the possible outcomes are countable.

Examples: + the outcome of tossing a coin X € {head, tail}
. rollingadiceX € {1,...,6}

. The number of people in France X € N
Discrete r.v.s are described by their probability distribution
P(X = k)

A positive “function” that sums to one. Z PX=k) =1
kesupp(X)



Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Continuous: when the possible outcomes are uncountable.



Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Continuous: when the possible outcomes are uncountable.

Examples: + Thetemperature in the room X € R

. The GDP of France nextyear X € R




Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Continuous: when the possible outcomes are uncountable.

Examples: + Thetemperature in the room X € R

. The GDP of France nextyear X € R

Continuous r.v.s are described by their probability density
function (p.d.f.), which integrates to probabilities:

b
P(X € [a,b]) = [ dx py(x)

A “function” that integrates to one:

Y supp(X)

dx px(x) =1



Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Continuous: when the possible outcomes are uncountable.

Examples: + Thetemperature in the room X € R

. The GDP of France nextyear X € R

Continuous r.v.s are described by their probability density
function (p.d.f.), which integrates to probabilities:

b
P(X € [a,b]) = [ dx py(x)

A “function” that integrates to one:

Y supp(X)

A The p.d.f. is NOT a probability. It can be negative.

dx px(x) =1



Normal distribution

A Gaussian rv. X ~ N (u, 6%) has the following p.d f:

1 _ (x = )
px(x) = e 27

One-Dimensional Gaussian PDF (Mean=0, Variance=1)

0.40¢+ —— Gaussian PDF
Within 1 Standard Deviation

Probability Density
o
N
o




Normal distribution

A Gaussian rv. X ~ N (u, 6%) has the following p.d.f:

1 . (x — u)?
px(x) = e 27

\/ 270

High-probability

One-Dimensional Gaussian PDF (Mean=0, Variance=1)

0.40¢+ —— Gaussian PDF
Within 1 Standard Deviation

Probability Density
o
N
o

Low-probability




Expectation and variance

Let X ~ py denote a continuous r.v.

. The expectation (or mean) of X is defined as

E[X] = [dx py(x)x

For example, for X ~ A (u, 62), we have E[X] = u




Expectation and variance

Let X ~ py denote a continuous r.v.

. The expectation (or mean) of X is defined as

E[X] = [dx py(x)x

For example, for X ~ A (u, 02), we have E[X] = u

. The variance of X is defined as:

Var[X] = E[(X - E[X])’] = E[X*] — E[X]*

For example, for X ~ A (u, 6°), we have Var[X] = ¢°



Change of variables

Let X ~ py denote a continuousrv.andf: R = R



Change of variables

Let X ~ py denote a continuousrv.andf: R = R

Then, Y = f(X) is also a random variable, with p.d.f.
gliven by

py(y) = de px(x)o(y — f(x))

Where 0(x) is the “Dirac delta function”

J dx 8(x — V) = )
R



Joint distribution

Two random variables X, Y that concern the same random
experiment are characterised by their joint p.d.f.

Px y(%,y)



Joint distribution

Two random variables X, Y that concern the same random
experiment are characterised by their joint p.d.f.

Px.y(x,y)

The correlation between X, Y is defined by

E[XY] = |dx |dy py y(x, y)xy




Joint distribution

Two random variables X, Y that concern the same random
experiment are characterised by their joint p.d.f.

Px.y(x,y)

The correlation between X, Y is defined by

E[XY] = |dx |dy py y(x, y)xy

We say X, Y are uncorrelated if E| XY | = E[X]E[Y]




Independence

. Giventworvs X, Y ~ py y, we define the marginal distributions

Px(x) = de PX,Y(X» y) py(y) = de PX,Y(Xa ),



Independence

. Giventwo rvs X, Y ~ py y, we define the marginal distributions
Px(x) = de PX,Y(X, y) py(y) = de PX,Y(X, ),

. We saythervs. X, Y are independent if

Px y(X, y) = px(X)py(x)



Independence

. Giventwo rvs X, Y ~ py y, we define the marginal distributions
Px(x) = de PX,Y(X, y) py(y) = de PX,Y(X, y)

. We saythervs. X, Y are independent if

Px y(X, y) = px(X)py(x)

Note that independence implies uncorrelated,
but not the converse!

@ Exercise: Construct a counter-example




Conditional distribution

. Giventwo rvs X, ¥ ~ py y, we define the conditional p.d.f.

pX,Y(xa y)
py(y)

leY(x |y) =



Conditional distribution

. Giventwo rvs X, ¥ ~ py y, we define the conditional p.d.f.

pX,Y(xa y)
py(y)

leY(x |y) =

Note that X, ¥ ~ py yare independent if and only if:

leY(x | y) = px(x)



Conditional distribution

. Giventwo rvs X, ¥ ~ py y, we define the conditional p.d.f.

pX,Y(xa y)
py(y)

leY(x |y) =

Note that X, ¥ ~ py yare independent if and only if:

leY(x | y) = px(x)

leX(y | X)px(x)
py(y)

Px y(x|y) =



Law of large numbers

Let Xy, ..., X, ~ pydenote iid. rv.s. with mean E[X;] = u

Define the sample mean (note this is itself a r.v.)

1Y
Xn:;;lXi



Law of large numbers

Let Xy, ..., X, ~ pydenote iid. rv.s. with mean E[X;] = u

Define the sample mean (note this is itself a r.v.)

1Y
x;:zg;g

P
X, = U as n — o0

lim P(|X, —u| <e) =1

n—oo

A Be aware there are many variations of the LLN.



Central IImit theorem

Let X{, ..., X ~ pydenoteiid.rv.s. with mean E[X.] = u
and variance Var(X;) = 6> < 00

Again, consider the sample mean

_ 1 «
anzizzl)(i



Central IImit theorem

Let X{, ..., X ~ pydenoteiid.rv.s. with mean E[X.] = u
and variance Var(X;) = 6> < 00

Again, consider the sample mean

_ 1 «
anzizzl)(i

V@&, =) > N, o)

lim P\/n(X,—u) <z)=P(Z<zlo) Z~ H0,1])

n—0odo

A Be aware there are many variations of the CLT.



