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Recap of  
Linear Algebra

The bread of statistical learning



The Euclidean space

The Euclidean space  is the vector space of -tuples:ℝd d
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The Euclidean space

The Euclidean space  is the vector space of -tuples:ℝd d

x =

x1
x2
⋮
xd

∈ ℝd

“column vector”

(ℝd×1)

Recall,  is a vector space of dimension  with basis:ℝd d

ei =

0
⋮
1
⋮
0

Position i



The Euclidean space
The Euclidean space is endowed with an inner (or scalar) product

u, v ∈ ℝd ⟨u, v⟩ =
d

∑
i=1

uivi



The Euclidean space
The Euclidean space is endowed with an inner (or scalar) product

u, v ∈ ℝd ⟨u, v⟩ =
d

∑
i=1

uivi

Which induces a natural notion of distance and size:

| |u | |2
2 = ⟨u, u⟩ =

d

∑
i=1

u2
i d(u, v) = | |u − v | |2

2

“Euclidean distance”“Euclidean or  norm”ℓ2

We say two vectors  are orthogonal ifu, v ∈ ℝd ⟨u, v⟩ = 0



Euclidean geometry

| |u | |2
2 = ⟨u, u⟩ =

d

∑
i=1

u2
i d(u, v) = | |u − v | |2

2

“Euclidean distance”“Euclidean or  norm”ℓ2

They correspond to our intuitive notion of geometry in the plane  

0d

u

v
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Euclidean geometry
They correspond to our intuitive notion of geometry in the plane  

0d

u

v

d(u, v) = | |u − v | |2
2

cos(θ) =
⟨u, v⟩

| |u | |2 | |v | |2

θ

In particular, we  say two vectors  are orthogonal ifu, v ∈ ℝd

⟨u, v⟩ = 0
u

v



Other norms

One can define other notions of size in ℝd

| |u | |p = (
d
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Other norms

One can define other notions of size in ℝd

| |u | |p = (
d

∑
i=1

up
i )

1/p

“  norm”ℓp

 is not associated to an inner product for | | ⋅ | |p p ≠ 2

p ≥ 1

ℓ1 ℓ2 ℓ∞ℓ0
Not a norm



Matrices
A real-valued matrix  is a table of real numbers.A ∈ ℝn×d
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Matrices
A real-valued matrix  is a table of real numbers.A ∈ ℝn×d

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ and

∈ ℝn×d

It is most often used to describe the coordinates of  linear 
transformations  with respect to a basis.A : ℝd → ℝn

ℝd

u

0d

ℝn

v

0n

A
vi =

d

∑
j=1

aijuj



Matrices
A real-valued matrix  is a table of real numbers.A ∈ ℝn×d

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ and

∈ ℝn×d

A1 A2 Ad

• The columns of  are vectors  with A ∈ ℝn×d Ai ∈ ℝn (Ai)j = aij

“Column space” col(A) = span(A1, ⋯, Ad) ⊂ ℝn



A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ and

∈ ℝn×d

Matrices
A real-valued matrix  is a table of real numbers.A ∈ ℝn×d

a1

a2

an

• The rows of  are vectors  with A ∈ ℝn×d aj ∈ ℝd (aj)i = aij

“Row space” of row(A) = span(a1, ⋯, an) ⊂ ℝd

• The columns of  are vectors  with A ∈ ℝn×d Ai ∈ ℝn (Ai)j = aij

“Column space” col(A) = span(A1, ⋯, Ad) ⊂ ℝn



Flattening matrices
The space of matrices   is itself a vector 
space of dimension . Therefore we can identify:

A ∈ ℝn×d

nd

ℝn×d ≃ ℝnd

By flattening the matrices into vectors.

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ and

↦

a11
a12
⋮

a1n
a21
⋮

∈ ℝnd



• The rank of a matrix  is the dimension of column spaceA ∈ ℝn×d

rank(A) = dim(col(A))

Rank of a matrix

This is equivalent to the number of independent columns.



• The rank of a matrix  is the dimension of column spaceA ∈ ℝn×d

rank(A) = dim(col(A))

This is equivalent to the number of independent columns.

Rank of a matrix

Proposition

rank(A) = dim(col(A)) = dim(row(A))



• The rank of a matrix  is the dimension of column spaceA ∈ ℝn×d

rank(A) = dim(col(A))

• A matrix  is said to be full-rank ifA ∈ ℝn×d

rank(A) = min(n, d)

Rank of a matrix

Proposition

rank(A) = dim(col(A)) = dim(row(A))

This is equivalent to the number of independent columns.



Another point of view

• Alternatively, we can see the column space  as  
The image of the associated linear map.

col(A) ⊂ ℝn

im(A) = col(A) = {v ∈ ℝn : Au = v for some u ∈ ℝd}



• The null-space or kernel of a matrix  is defined as:A ∈ ℝn×d

ker(A) = {u ∈ ℝd : Au = 0}

Note that  
and 

ker(A) ⊂ ℝd

0 ∈ ker(A)

im(A) = col(A) = {v ∈ ℝn : Au = v for some u ∈ ℝd}

• Alternatively, we can see the column space  as  
The image of the associated linear map.

col(A) ⊂ ℝn

Another point of view



Image and null-space

ℝd

A ∈ ℝn×d

0d

ℝn

0n

im(A)ker(A)

Proposition

Let  denote a linear map. We have: A ∈ ℝn×d

rank(A) + dim(ker(A)) = n



A square matrix  is said to be invertible if there exists 
  such that:

A ∈ ℝd×d

B ∈ ℝd×d

AB = Id

Matrix inverse

In this case, we denote .B = A−1



A square matrix  is said to be invertible if there exists 
  such that:

A ∈ ℝd×d

B ∈ ℝd×d

AB = Id

In this case, we denote .B = A−1

For any invertible matrix   
.

A ∈ ℝd×d

(A−1)−1 = A

Matrix inverse



A square matrix  is said to be invertible if there exists 
  such that:

A ∈ ℝd×d

B ∈ ℝd×d

AB = Id

In this case, we denote .B = A−1

Proposition

A square matrix  is invertible 
if and only if it is full-rank 

 

A ∈ ℝd×d

rank(A) = d

For any invertible matrix   
.

A ∈ ℝd×d

(A−1)−1 = A

Matrix inverse



ℝd
A ∈ ℝd×d

0d
0n

im(A) = ℝd

Proposition

A square matrix  is invertible 
if and only if it is full-rank 

 

A ∈ ℝd×d

rank(A) = d

Matrix inverse



• The transpose of a matrix  with elements 
  the matrix with  with elements 

A ∈ ℝn×d

aij A⊤ ∈ ℝd×n aji

A⊤ =

Matrix transpose

A =



Matrix transpose

• The transpose of a matrix  with elements 
  the matrix with  with elements 

A ∈ ℝn×d

aij A⊤ ∈ ℝd×n aji

A⊤ =

• We have:

(AB)⊤ = B⊤A⊤

(A⊤)⊤ = A
(aA + bB)⊤ = aA⊤ + bB⊤

(A−1)⊤ = (A⊤)−1

A =

Exercise: check this.



Matrix transpose

• The transpose of a matrix  with elements 
  the matrix with  with elements 

A ∈ ℝn×d

aij A⊤ ∈ ℝd×n aji

A⊤ =A =

• Note that by seeing  as column vectors, 
we can also write the Euclidean inner product as:

u, v ∈ ℝd×1

⟨u, v⟩ = u⊤v Exercise: check this.



Matrix trace

• The trace of a square matrix  is the sum of 
its diagonal:

A ∈ ℝd×d

Tr A =
d

∑
i=1

aii



Matrix trace

• The trace of a square matrix  is the sum of 
its diagonal:

A ∈ ℝd×d

Tr A =
d

∑
i=1

aii

• It satisfies: Tr AB = Tr BA

Tr (aA + bB) = aTr A + bTr B
Tr A⊤ = Tr A

Exercise: check this.



Symmetric matrices

• A square matrix  is symmetric if A ∈ ℝd×d A⊤ = A



• A square matrix  is symmetric if A ∈ ℝd×d A⊤ = A

For any ,  and  are 
symmetric matrices.

A ∈ ℝn×d A⊤A ∈ ℝd×d AA⊤ ∈ ℝn×n

Symmetric matrices



• A square matrix  is symmetric if A ∈ ℝd×d A⊤ = A

For any ,  and  are 
symmetric matrices.

A ∈ ℝn×d A⊤A ∈ ℝd×d AA⊤ ∈ ℝn×n

Symmetric matrices

Letting  denote the rows of , we have:ai ∈ ℝd A ∈ ℝn×d

(AA⊤)ij = ⟨ai, aj⟩

Exercise: check this.

Note: a similar representation holds for columns of A



Orthogonal matrices

• A square matrix  is orthogonal if A ∈ ℝd×d A⊤ = A−1



Orthogonal matrices

• A square matrix  is orthogonal if A ∈ ℝd×d A⊤ = A−1

Orthogonal matrices preserve the norm and 
distance between vectors (they are isometries):

| |Au | |2 = | |u | |2 Exercise: check this.



Orthogonal matrices

• A square matrix  is orthogonal if A ∈ ℝd×d A⊤ = A−1

Orthogonal matrices preserve the norm and 
distance between vectors (they are isometries):

| |Au | |2 = | |u | |2 Exercise: check this.

Geometrically, they define rotations

0 e1 = [1
0]

e2 = [0
1] A = [0 −1

1 0 ]



Projection matrix

• A square matrix  is a projection if A ∈ ℝd×d A2 = A

Moreover, if  is also orthogonal, we call it a 
orthogonal projection.

A

ℝ3

Au0

ℝ2

u

P = [
1 0 0
0 1 0
0 0 0]



Projection matrix

• A square matrix  is a projection if A ∈ ℝd×d A2 = A

Moreover, if  is also orthogonal, we call it a 
orthogonal projection.

A

Proposition

Any  can be uniquely written as:v ∈ ℝd

v = u + Av u ∈ ker(A)



Projection matrix

• A square matrix  is a projection if A ∈ ℝd×d A2 = A

Moreover, if  is also orthogonal, we call it a 
orthogonal projection.

A

Proposition

Any  can be uniquely written as:v ∈ ℝd

The only projection matrix which is invertible is the 
identity.

v = u + Av u ∈ ker(A)



Eigen-(values, vectors)
Let  denote a square matrix. An eigenvector is a vector 
that is only re-scaled under the action of :

A ∈ ℝd×d

A

Av = λv

Where  is known as an eigenvalue.λ ∈ ℝ



Let  denote a square matrix. An eigenvector is a vector 
that is only re-scaled under the action of :

A ∈ ℝd×d

A

Av = λv

Where  is known as an eigenvalue.λ ∈ ℝ

Eigen-(values, vectors)

We call the set of eigenvalues the spectrum of :A

spec(A) = {λ ∈ ℝ : Av = λv}



Let  denote a square matrix. An eigenvector is a vector 
that is only re-scaled under the action of :

A ∈ ℝd×d

A

Av = λv

Where  is known as an eigenvalue.λ ∈ ℝ

• A square matrix  can have at most   
independent eigenvectors.

A ∈ ℝd×d d

• An eigenvalue  can be associated to more than one 
independent eigenvector.

λ

Eigen-(values, vectors)

We call the set of eigenvalues the spectrum of :A

spec(A) = {λ ∈ ℝ : Av = λv}



• A square matrix  is called positive definite if all 
eigenvalues are positive:

A ∈ ℝd×d

Positive matrices

λ ∈ spec(A) ⇒ λ > 0



• A square matrix  is called positive definite if all 
eigenvalues are positive:

A ∈ ℝd×d

Positive matrices

• A square matrix  is called positive semi-definite if all 
eigenvalues are non-negative:

A ∈ ℝd×d

λ ∈ spec(A) ⇒ λ > 0

λ ∈ spec(A) ⇒ λ ≥ 0



• A square matrix  is called positive definite if all 
eigenvalues are positive:

A ∈ ℝd×d

Positive matrices

• A square matrix  is called positive semi-definite if all 
eigenvalues are non-negative:

A ∈ ℝd×d

λ ∈ spec(A) ⇒ λ > 0

λ ∈ spec(A) ⇒ λ ≥ 0
Proposition

Symmetric matrices  are positive semi-definiteA ∈ ℝd×d

Exercise: prove this.



• A square matrix  is called positive definite if all 
eigenvalues are positive:

A ∈ ℝd×d

Positive matrices

• A square matrix  is called positive semi-definite if all 
eigenvalues are non-negative:

A ∈ ℝd×d

λ ∈ spec(A) ⇒ λ > 0

λ ∈ spec(A) ⇒ λ ≥ 0
Proposition

Symmetric matrices  are positive semi-definiteA ∈ ℝd×d

not necessarily positive definite. Exercise: prove this.



Spectral theorem
Theorem

Any symmetric matrix  can be decomposed asA ∈ ℝd×d

A = UDU⊤

 are orthogonal matrices and  is a diagonal matrix 
with elements given by the eigenvalues.
U ∈ ℝd×d D



Spectral theorem
Theorem

Any symmetric matrix  can be decomposed asA ∈ ℝd×d

A =
rank(A)

∑
i=1

λiviv⊤
i

 are orthogonal matrices and  is a diagonal matrix 
with elements given by the eigenvalues.
U ∈ ℝd×d D

A = UDU⊤

We can equivalently write the spectral decomposition as:

Where  are orthonormal eigenvectors.vi ∈ ℝd



Important facts
• The trace of a symmetric matrix  is the sum of its 

eigenvalues
A ∈ ℝd×d

Tr A =
d

∑
i=1

λi



Important facts
• The trace of a symmetric matrix  is the sum of its 

eigenvalues
A ∈ ℝd×d

Tr A =
d

∑
i=1

λi

• A square matrix  is invertible i.f.f. A ∈ ℝd×d 0 ∉ spec(A)



Important facts

• The eigenvalues of a projection matrix  are  or P ∈ ℝd×d 0 1

P =
rank(P)

∑
i=1

viv⊤
i

Moreover,  is orthogonal if  are orthogonal vectors.P ∈ ℝd×d vi

Exercise: show this.

• The trace of a symmetric matrix  is the sum of its 
eigenvalues

A ∈ ℝd×d

Tr A =
d

∑
i=1

λi

• A square matrix  is invertible i.f.f. A ∈ ℝd×d 0 ∉ spec(A)



Singular value decomposition
Note that for any real matrix ,   and 

 are a symmetric matrices.
A ∈ ℝn×d A⊤A ∈ ℝd×d

AA⊤ ∈ ℝn×n



Singular value decomposition
Note that for any real matrix ,   and 

 are a symmetric matrices.
A ∈ ℝn×d A⊤A ∈ ℝd×d

AA⊤ ∈ ℝn×n

Therefore,  and can be diagonalised:A⊤A AA⊤

A⊤A =
r

∑
i=1

λiviv⊤
i AA⊤ =

r

∑
i=1

λiuiu⊤
i

Where: r = rank(A⊤A) = rank(AA⊤)

 ,  are orthonormal vectors.ui ∈ ℝn vi ∈ ℝd

 λi ≥ 0



Singular value decomposition
Note that for any real matrix ,   and 

 are a symmetric matrices.
A ∈ ℝn×d A⊤A ∈ ℝd×d

AA⊤ ∈ ℝn×n

Therefore,  and can be diagonalised:A⊤A AA⊤

A⊤A =
r

∑
i=1

λiviv⊤
i AA⊤ =

r

∑
i=1

λiuiu⊤
i

Where:

Therefore, defining the singular values σi = λi

r = rank(A⊤A) = rank(AA⊤)

 ,  are orthonormal vectors.ui ∈ ℝn vi ∈ ℝd

 λi ≥ 0



Singular value decomposition
Theorem

Any real matrix  can be decomposed asA ∈ ℝn×d

A =
rank(A)

∑
i=1

σiuiv⊤
i



Singular value decomposition
Theorem

Any real matrix  can be decomposed asA ∈ ℝn×d

A =
rank(A)

∑
i=1

σiuiv⊤
i

This can be equivalently written as:

A = UDV⊤

With:  and  orthogonal matricesU ∈ ℝn×n V ∈ ℝd×d

 a rectangular matrix with the singular values D ∈ ℝn×d σi



Singular value decomposition
Theorem

Any real matrix  can be decomposed asA ∈ ℝn×d

A =
rank(A)

∑
i=1

σiuiv⊤
i

This can be equivalently written as:

A = UDV⊤

With:  and  orthogonal matricesU ∈ ℝn×n V ∈ ℝd×d

 a rectangular matrix with the singular values D ∈ ℝn×d σi

Computationally, it is more efficient to define 
,  and U ∈ ℝn×r V ∈ ℝd×r D ∈ ℝr×r



Pseudo-inverse
The SVD allow us to define a generalised notion of 
matrix inverse. Let  with SVD:A ∈ ℝn×d

The pseudo-inverse  is defined via its SVD:A+ ∈ ℝd×n

A =
rank(A)

∑
i=1

σiuiv⊤
i

A+ =
rank(A)

∑
i=1

1
σi

viu⊤
i



Pseudo-inverse
The pseudo-inverse  is defined via its SVD:A+ ∈ ℝd×n

A+ =
rank(A)

∑
i=1

1
σi

viu⊤
i

It satisfies: AA+A = A A+AA+ = A+

If  is invertible, A A+ = A−1

If  is full-rank, A A+ = {(A⊤A)−1A⊤ if n ≥ d
A⊤(AA⊤)−1A⊤ if n < d

(A+)+ = A

Exercise: show this.



Pseudo-inverse
The pseudo-inverse is useful to define orthogonal projectors

A+A ∈ ℝd×d AA+ ∈ ℝn×n

For any real matrix :A ∈ ℝn×d

Define orthogonal projection operators in the column 
and row space of , respectively.A

Exercise:  
show this.



Pseudo-inverse
The pseudo-inverse is useful to define orthogonal projectors

A+A ∈ ℝd×d AA+ ∈ ℝn×n

For any real matrix :A ∈ ℝn×d

Define orthogonal projection operators in the column 
and row space of , respectively.A

Exercise:  
show this.

Similarly,
Id − A+A ∈ ℝd×d In − AA+ ∈ ℝn×n

Define orthogonal projection operators in the kernel of  
and , respectively.

A
A⊤



Recap of  
Probability

The butter of statistical learning



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”.

X



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

Examples: • the outcome of tossing a coin X ∈ {head, tail}
• rolling a dice X ∈ {1,…,6}

• The number of people in France  X ∈ ℕ

• Discrete: when the possible outcomes are countable.



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

• Discrete: when the possible outcomes are countable.

Discrete r.v.s are described by their probability distribution

ℙ(X = k)

∑
k∈supp(X)

ℙ(X = k) = 1

Examples: • the outcome of tossing a coin X ∈ {head, tail}
• rolling a dice X ∈ {1,…,6}

• The number of people in France  X ∈ ℕ

A positive “function” that sums to one.



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

• Continuous: when the possible outcomes are uncountable.



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

Examples: • The temperature in the room X ∈ ℝ
• The GDP of France next year X ∈ ℝ

• Continuous: when the possible outcomes are uncountable.



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

Examples: • The temperature in the room X ∈ ℝ
• The GDP of France next year X ∈ ℝ

Continuous r.v.s are described by their probability density 
function (p.d.f.), which integrates to probabilities:

ℙ(X ∈ [a, b]) = ∫
b

a
dx pX(x)

∫supp(X)
dx pX(x) = 1A “function” that integrates to one:

• Continuous: when the possible outcomes are uncountable.



Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

Examples: • The temperature in the room X ∈ ℝ
• The GDP of France next year X ∈ ℝ

∫supp(X)
dx pX(x) = 1A “function” that integrates to one:

The p.d.f. is NOT a probability. It can be negative.

ℙ(X ∈ [a, b]) = ∫
b

a
dx pX(x)

Continuous r.v.s are described by their probability density 
function (p.d.f.), which integrates to probabilities:

• Continuous: when the possible outcomes are uncountable.



Normal distribution

A Gaussian r.v.  has the following p.d.f.:X ∼ 𝒩(μ, σ2)

pX(x) =
1

2πσ2
e− (x − μ)2

2σ2



Normal distribution

A Gaussian r.v.  has the following p.d.f.:X ∼ 𝒩(μ, σ2)

pX(x) =
1

2πσ2
e− (x − μ)2

2σ2

High-probability

Low-probability



Expectation and variance
Let  denote a continuous r.v.X ∼ pX

• The expectation (or mean) of  is defined asX

𝔼[X] = ∫ dx pX(x)x

For example, for , we have X ∼ 𝒩(μ, σ2) 𝔼[X] = μ



Expectation and variance
Let  denote a continuous r.v.X ∼ pX

• The expectation (or mean) of  is defined asX

𝔼[X] = ∫ dx pX(x)x

For example, for , we have X ∼ 𝒩(μ, σ2) 𝔼[X] = μ

• The variance of  is defined as:X

Var[X] = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − 𝔼[X]2

For example, for , we have X ∼ 𝒩(μ, σ2) Var[X] = σ2



Change of variables
Let  denote a continuous r.v. and X ∼ pX f : ℝ → ℝ



Change of variables
Let  denote a continuous r.v. and X ∼ pX f : ℝ → ℝ

Then,  is also a random variable, with p.d.f. 
given by

Y = f(X)

pY(y) = ∫ dx pX(x)δ(y − f(x))

Where  is the “Dirac delta function”:δ(x)

∫ℝ
dx δ(x − y)f(x) = f(y)



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)

The correlation between  is defined byX, Y

𝔼[XY ] = ∫ dx∫ dy pX,Y(x, y)xy



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)

The correlation between  is defined byX, Y

𝔼[XY ] = ∫ dx∫ dy pX,Y(x, y)xy

We say  are uncorrelated if X, Y 𝔼[XY] = 𝔼[X]𝔼[Y]



Independence

• Given two r.v.s , we define the marginal distributionsX, Y ∼ pX,Y

pX(x) = ∫ dy pX,Y(x, y) pY(y) = ∫ dx pX,Y(x, y)



Independence

• We say the r.v.s.  are independent ifX, Y

pX,Y(x, y) = pX(x)pY(x)

• Given two r.v.s , we define the marginal distributionsX, Y ∼ pX,Y

pX(x) = ∫ dy pX,Y(x, y) pY(y) = ∫ dx pX,Y(x, y)



Independence

• We say the r.v.s.  are independent ifX, Y

pX,Y(x, y) = pX(x)pY(x)

• Given two r.v.s , we define the marginal distributionsX, Y ∼ pX,Y

pX(x) = ∫ dy pX,Y(x, y) pY(y) = ∫ dx pX,Y(x, y)

Note that independence implies uncorrelated, 
but not the converse!

Exercise: Construct a counter-example



Conditional distribution

• Given two r.v.s , we define the conditional p.d.f.X, Y ∼ pX,Y

pX|Y(x |y) =
pX,Y(x, y)

pY(y)



Conditional distribution

• Given two r.v.s , we define the conditional p.d.f.X, Y ∼ pX,Y

pX|Y(x |y) =
pX,Y(x, y)

pY(y)

Note that  are independent if and only if:X, Y ∼ pX,Y

pX|Y(x |y) = pX(x)



pX|Y(x |y) =
pY|X(y |x)pX(x)

pY(y)

Conditional distribution

• Given two r.v.s , we define the conditional p.d.f.X, Y ∼ pX,Y

pX|Y(x |y) =
pX,Y(x, y)

pY(y)

Note that  are independent if and only if:X, Y ∼ pX,Y

pX|Y(x |y) = pX(x)

Theorem (Bayes theorem)



Law of large numbers

Define the sample mean (note this is itself a r.v.)

X̄n =
1
n

n

∑
i=1

Xi

Let  denote i.i.d. r.v.s. with mean X1, …, Xn ∼ pX 𝔼[Xi] = μ



Law of large numbers
Let  denote i.i.d. r.v.s. with mean X1, …, Xn ∼ pX 𝔼[Xi] = μ

Define the sample mean (note this is itself a r.v.)

X̄n =
1
n

n

∑
i=1

Xi

Theorem (Weak LLN)

X̄n
P→ μ n → ∞as

lim
n→∞

ℙ( | X̄n − μ | < ϵ) = 1

Be aware there are many variations of the LLN.



Central limit theorem
Let  denote i.i.d. r.v.s. with mean  
and variance 

X1, …, Xn ∼ pX 𝔼[Xi] = μ
Var(Xi) = σ2 < ∞

Again, consider the sample mean

X̄n =
1
n

n

∑
i=1

Xi



Central limit theorem
Let  denote i.i.d. r.v.s. with mean  
and variance 

X1, …, Xn ∼ pX 𝔼[Xi] = μ
Var(Xi) = σ2 < ∞

Again, consider the sample mean

X̄n =
1
n

n

∑
i=1

Xi

Theorem (Lindeberg CLT)

n(X̄n − μ) d→ 𝒩(μ, σ2)

lim
n→∞

ℙ( n(X̄n − μ) ≤ z) = ℙ(Z ≤ z /σ)

Be aware there are many variations of the CLT.

Z ∼ 𝒩(0,1)


