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Ridge regression

̂θλ(X, y) =
1
n ( 1

n
X⊤X + λId)

−1

X⊤y

Remarks: • As before, consider s.v.d. of X =
rank(X)

∑
j=1

σjujvj

̂θλ(X, y) =
rank(X)

∑
j=1

σj

σ2
j + nλ

⟨uj, y⟩vj

Ridge performs shrinkage: 

small s.v.s are suppressed!



Statistical analysis of 

ridge regression



Fixed design assumption
As we did for the OLS, now let’s assume:

yi = ⟨θ⋆, xi⟩ + εi

With: • Fixed  and θ⋆ ∈ ℝd xi ∈ ℝd

•  and  𝔼[εi] = 0 𝔼[ε2
i ] = σ2 < ∞

“fixed design”

⟨θ⋆, xi⟩

σ



Decomposition of ridge
Given a batch of data sampled from this model:

y = Xθ⋆ + ε ∈ ℝn

The ridge estimator is given by:

̂θλ(X, y) =
1
n (Σ̂n + λId)

−1
X⊤y
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Decomposition of ridge
Given a batch of data sampled from this model:

y = Xθ⋆ + ε ∈ ℝn

The ridge estimator is given by:
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Decomposition of ridge
Given a batch of data sampled from this model:

y = Xθ⋆ + ε ∈ ℝn

The ridge estimator is given by:

̂θλ(X, y) =
1
n (Σ̂n + λId)

−1
X⊤y =

1
n (Σ̂n + λId)

−1
X⊤(Xθ⋆ + ε)

= (Σ̂n + λId)
−1

Σ̂nθ⋆ +
1
n (Σ̂n + λId)

−1
X⊤ε

= θ⋆ − λ (Σ̂n + λId)
−1

θ⋆ +
1
n (Σ̂n + λId)

−1
X⊤ε



Decomposition of ridge

“signal” “noise”

̂θλ(X, y) = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆ +
1
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X⊤ε



Decomposition of ridge

“signal” “noise”

̂θλ(X, y) = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆ +
1
n (Σ̂n + λId)

−1
X⊤ε

In particular:

• Bias: 𝔼ε [ ̂θλ(X, y)] = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆



Decomposition of ridge

“signal” “noise”

̂θλ(X, y) = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆ +
1
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In particular:

• Bias:

• Variance: Varε [ ̂θλ(X, y)] =
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n (Σ̂n + λId)
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Decomposition of ridge

“signal” “noise”

̂θλ(X, y) = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆ +
1
n (Σ̂n + λId)

−1
X⊤ε

In particular:

• Bias:

• Variance: Varε [ ̂θλ(X, y)] =
σ2

n (Σ̂n + λId)
−2

Σ̂n

𝔼ε [ ̂θλ(X, y)] = θ⋆ − λ (Σ̂n + λId)
−1

θ⋆

• Ridge is a biased estimator.

• Regularisation shrinks both signal and noise



Risk of ridge
Recall that in Lecture 5 we have shown that for any :θ ∈ ℝd

ℛ(θ) − σ2 = (θ − θ⋆)⊤Σ̂n(θ − θ⋆)



Risk of ridge
Recall that in Lecture 5 we have shown that for any :θ ∈ ℝd

ℛ(θ) − σ2 = (θ − θ⋆)⊤Σ̂n(θ − θ⋆)

Therefore, inserting the solution :̂θλ(X, y)

ℛ( ̂θλ) − σ2 = λ2θ⊤
⋆(Σ̂n + λId)−2θ⋆

+
1
n2

ε⊤X(Σ̂n + λId)−1X⊤X(Σ̂n + λId)−1X⊤ε

−
λ
n

ε⊤X(Σ̂n + λId)−2θ⋆



Risk of ridge
Taking the expectation with respect to the noise:

𝔼ε[ℛ( ̂θλ)] − σ2 = λ2θ⊤
⋆(Σ̂n + λId)−2Σ̂nθ⋆ +

σ2

n
Tr Σ̂2

n(Σ̂n + λId)−2



Risk of ridge
Taking the expectation with respect to the noise:

𝔼ε[ℛ( ̂θλ)] − σ2 = λ2θ⊤
⋆(Σ̂n + λId)−2Σ̂nθ⋆ +

σ2

n
Tr Σ̂2

n(Σ̂n + λId)−2

Alternatively, we can also write in terms of a bias-variance 
decomposition of the risk:

𝔼ε[ℛ( ̂θλ)] − σ2 = ℬ + 𝒱

ℬ = λ2θ⊤
⋆(Σ̂n + λId)−2Σ̂nθ⋆ 𝒱 =

σ2

n
Tr Σ̂2

n(Σ̂n + λId)−2

Where:



Risk of ridge

ℬ =
rank(X)

∑
k=1

(nλ)2λk⟨vk, θ⋆⟩2

(λk + nλ)2

Considering the SVD of , we can also write:X =
rank(X)

∑
k=1

λkukv⊤
k

𝒱 =
rank(X)

∑
k=1

σ2λ2
k

(λk + nλ)2



Risk of ridge

Considering the SVD of , we can also write:X =
rank(X)

∑
k=1

λkukv⊤
k

Remarks:

• For , we get the OLS excess riskλ → 0+

•  is an increasing function of ℬ(λ) λ

•  is a decreasing function of 𝒱(λ) λ

ℬ =
rank(X)

∑
k=1

(nλ)2λk⟨vk, θ⋆⟩2

(λk + nλ)2
𝒱 =

rank(X)

∑
k=1

σ2λ2
k

(λk + nλ)2



Risk of ridge

Considering the SVD of , we can also write:X =
rank(X)

∑
k=1

λkukv⊤
k

𝒱 =
rank(X)

∑
k=1

σ2λ2
k

(λk + nλ)2

Remarks:

• For , we get the OLS excess riskλ → 0+

•  is an increasing function of ℬ(λ) λ

•  is a decreasing function of 𝒱(λ) λ

Sweet spot

(data dependent)

ℬ =
rank(X)

∑
k=1

(nλ)2λk⟨vk, θ⋆⟩2

(λk + nλ)2



Interpretation of variance

Let  be a positive definite matrix with decreasing 
eigenvalues . Define the cumulative:

A ∈ ℝd×d

spec(A) = {λk : k = 1,⋯, d}

ϕ(λ) = #{k : λk > λ} “Count eigenvalues 
bigger than ”λ



Interpretation of variance

Let  be a positive definite matrix with decreasing 
eigenvalues . Define the cumulative:

A ∈ ℝd×d

spec(A) = {λk : k = 1,⋯, d}

ϕ(λ) = #{k : λk > λ} “Count eigenvalues 
bigger than ”λ

The variance of the ridge risk can be seen as a soft version:

spec(A) = {0.5,1.5,3,5,10}
df2(λ) =

d

∑
k=1

λ2
k

(λk + λ)2



Interpretation of variance

df2(λ) =
d

∑
k=1

λ2
k

(λk + λ)2

Let  be a positive definite matrix with decreasing 
eigenvalues . Define the cumulative:

A ∈ ℝd×d

spec(A) = {λk : k = 1,⋯, d}

ϕ(λ) = #{k : λk > λ} “Count eigenvalues 
bigger than ”λ

The variance of the ridge risk can be seen as a soft version:

spec(A) = {0.5,1.5,3,5,10}

• Fast decay: small 

• Slow decay: large 

λ
λ



Choosing regularisation

High-frequencyLow-frequency

df2(λ)
Goal: pick  such that:λ

•  directions in  that better 

correlate with  are retained 

X
θ⋆

• Shrink remaining directions

In practice, cross-validation…


