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Assumptions

We now assume the following data generative model:

y; = (0, x;) + ¢

With: .« Fixedf, e R?andx, e R? “fixed design”
. Elg] =0and E[e?] = 6% < o
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Decomposition of OLS

In particular:

. Bias:

. Variance: Var, [éOLS(X,)’)]
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*Unbilased”

Informally, if ﬁn — XY arank d matrix asn — oo, then:

0, ¢— 0, as n — oo

“Consistency”



Risk of OLS

Therefore, we have the following final result for the excess
risk of OLS

n d
= [%(HOLS)] — 0% = 0"—

n

Remarks:

Excess risk is proportional to the noise level E[¢?] = 62
. EXcess risk is proportional to the data dimension.

. To achieve excess risk AZ < §, need:

o2d
n>—-
%)

samples.



Bias-variance decomposition

Generally, If we have a data generative model for the training
data @ = {(x,y) € R*™ :i=1,...,n}:

y, =f,(x) + ¢ =signal + noise

With E[¢] = 0 and E[&?] = 67
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Bias-variance decomposition

Generally, If we have a data generative model for the training
data @ = {(x,y) € R*™ :i=1,...,n}:

y, =f,(x) + ¢ =signal + noise

With E[e] = 0 and E[e?] = %, we can decompose the excess risk:

= [R0)] — 67 = E [(f,(x) = f5x))]
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Bias-variance decomposition

Generally, If we have a data generative model for the training
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Bias-variance decomposition

Generally, If we have a data generative model for the training
data @ = {(x,y) € R*™ :i=1,...,n}:

Y =f*(x)

g; = slgnal + noise

With E[e] = 0 and E[e?] = %, we can decompose the excess risk:
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Bias-variance decomposition
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Bias-variance decomposition
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Bias-variance decomposition

B = E |(f,(x) = Ec[f(0)])]
7" = E |(EcLf0)] = f30))’]

RO -0 =B+V

A Recall the the approximation + estimation
decomposition from lecture 3:

RO) — R, = (9@3(9) — inf 9?(9’)) + ( inf Z(0') — 9@)
0'c® 0'c®

For the OLS setting from before (rank(X) = d < n):

_[fé(x)] — (0*,x) zf*(x) = AB=0 7V = 62%



Marvels and pitfalls of OLS

To summarise, the OLS estimator 8, (X, y) = X™y:

. Can only fit linear functions.

« Forn>d haslow blas % =0

. d
. When, n> d has low variance 7 = ¢*—
n



Marvels and pitfalls of OLS

To summarise, the OLS estimator 8, (X, y) = X™y:

. Can only fit linear functions.

. Forn>d haslow blas % =0

. d
. When, n> d has low variance 7 = ¢*—

n

But what about n ~ d? Consider for instance n = d.

INnterpolates the
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Marvels and pitfalls of OLS

But what about n ~ d? Consider for instance n = d.

INnterpolates the

dXd jc i I — e ) ..
X e R"Isinvertible y =X0ors training data.

- = True target function
X Noisy data

— Least squares fit [ N —_— 2
e[‘%(HOLS)] =20

15+

10|

@n(éOLS) =0

The test error above is
valid for the fixed design.
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Marvels and pitfalls of OLS

Recall that;:

A 1 A
0, (X,y) =0 +—%"'X"e
n
41
=0+ Z ;(uj, £)v;
j=1 "

Hence: « signalisstronger in directions with larger s.v.

« Noise dominates directions with smaller s.v.

OLS has larger variance for data with small “effective dimension”.



What to do?

Classical strategies to mitigate variance:

- Dimensionality reduction: PCA, random
projections (sketching), etc.

- Variable subset selection: Stepwise
selection, best Subset Selection, etc.

. Regularisation: ridge, LASSO, etc.



