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Assumptions
We now assume the following data generative model:

yi = ⟨θ⋆, xi⟩ + εi

With: • Fixed  and θ⋆ ∈ ℝd xi ∈ ℝd

•  and  𝔼[εi] = 0 𝔼[ε2
i ] = σ2 < ∞

“fixed design”

⟨θ⋆, xi⟩

σ



̂θOLS(X, y) = θ⋆ +
1
n

Σ̂−1
n X⊤ε

Decomposition of OLS

“signal” “noise”

In particular:

𝔼ε [ ̂θOLS(X, y)] = θ⋆• Bias:

• Variance: Varε [ ̂θOLS(X, y)] =
σ2

n
Σ̂−1

n

“Unbiased”

Informally, if  a rank  matrix as , then:Σ̂n → Σ d n → ∞

̂θOLS → θ⋆ as n → ∞ “Consistency”



Risk of OLS

𝔼ε [ℛ( ̂θOLS)] − σ2 = σ2 d
n

Therefore, we have the following final result for the excess 
risk of OLS 

Remarks:

• Excess risk is proportional to the noise level .𝔼[ε2] = σ2

• Excess risk is proportional to the data dimension.

• To achieve excess risk , need:Δℛ < δ

n >
σ2d
δ

samples. 



Bias-variance decomposition
Generally, if we have a data generative model for the training 
data :𝒟 = {(xi, yi) ∈ ℝd+1 : i = 1,…, n}

yi = f⋆(x) + εi  signal + noise=
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Bias-variance decomposition
Generally, if we have a data generative model for the training 
data :𝒟 = {(xi, yi) ∈ ℝd+1 : i = 1,…, n}
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With  and , we can decompose the excess risk:𝔼[ε] = 0 𝔼[ε2] = σ2
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Bias-variance decomposition

𝔼ε[ℛ( ̂θ)] − σ2 = ℬ + 𝒱
ℬ = 𝔼 [( f⋆(x) − 𝔼ε[ f ̂θ(x)])2]
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Bias-variance decomposition

𝔼ε[ℛ( ̂θ)] − σ2 = ℬ + 𝒱
ℬ = 𝔼 [( f⋆(x) − 𝔼ε[ f ̂θ(x)])2]
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Recall the the approximation + estimation 
decomposition from lecture 3:

ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + ( inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)



Bias-variance decomposition

𝔼ε[ℛ( ̂θ)] − σ2 = ℬ + 𝒱
ℬ = 𝔼 [( f⋆(x) − 𝔼ε[ f ̂θ(x)])2]
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ℛ(θ) − ℛ⋆ = (ℛ(θ) − inf
θ′￼∈Θ

ℛ(θ′￼)) + ( inf
θ′￼∈Θ

ℛ(θ′￼) − ℛ⋆)
For the OLS setting from before ( ):rank(X) = d < n

𝔼[ f ̂θ(x)] = ⟨θ⋆, x⟩ = f⋆(x) ⇒ ℬ = 0 𝒱 = σ2 d
n

Recall the the approximation + estimation 
decomposition from lecture 3:
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𝔼ε[ℛ( ̂θOLS)] = 2σ2

ℛ̂n( ̂θOLS) = 0

The test error above is 

valid for the fixed design.
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Recall that:

̂θOLS(X, y) = θ⋆+
1
n

Σ̂−1
n X⊤ε

= θ⋆+
d

∑
j=1

1
σj

⟨uj, ε⟩vj

Hence: • signal is stronger in directions with larger s.v.

• noise dominates directions with smaller s.v.

OLS has larger variance for data with small “effective dimension”.

Marvels and pitfalls of OLS



Classical strategies to mitigate variance:

What to do?

• Dimensionality reduction: PCA, random 
projections (sketching), etc.

• Variable subset selection: Stepwise 
selection, best Subset Selection, etc.

• Regularisation: ridge, LASSO, etc. 


