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Geometrical interpretation

This gives a natural interpretation of the OLS predictor as an
orthogonal projection of the labels in the row space of X:

Oors =Xy = Vors = X0o15 = XXy

im(X) C R”
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min ||y —z][5
zeim(X)



Statistical analysis of OLS

Fixed-design analysis
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Decomposition of OLS

Given a batch of data sampled from this model:
y=X0,+€eecR"

Our goal is to understand the statistical properties of OLS.
For simplicity, assume that rank(X) = d (n > d):
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Decomposition of OLS

Given a batch of data sampled from this model:
y=X0,+¢eecR"

Our goal is to understand the statistical properties of OLS.
For simplicity, assume that rank(X) = d (n > d):

0, (X,y)=X"X)"'XTy = X"X)"'XT(X0, +¢)
=X'X)"'X'X0, + X'X)"'X e

l A
=0, +—X.'X"e
n

, A 1 . :
Where we have defined X, = —X'X € R*“ (Empirical covariance)
n
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“signal” “noise”

In particular:

. Bias: =, [90LS(X,y)] =0, “Unbiased”

2

A\

A O 1
. Variance:  Var, [HOLS(X,)’)] — 7211

Hence, informally:

) ¢— 0, asn— “Consistency”
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Therefore, for the OLS 4, (X,y) = 0, + lﬁ‘.,;lXTe:
n

. 1 .
ROprs) —0° = —€e' XL, 'X e

n

A This is a random variable since 8, ¢ iIs random!
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First, note we can rewrite:

. I o . 1 .
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n2
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Now taking the expectation:

| @015)| - 0* =

1
—1r
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n

1 A
= —Tr [eeTX Y-lx T]

", |eeT] XX, X T]
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Risk of OLS

Therefore, we have the following final result for the excess
risk of OLS
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Risk of OLS

Therefore, we have the following final result for the excess
risk of OLS

n d
= [%(HOLS)] — 0% = 0"—

n

Remarks:

Excess risk is proportional to the noise level E[¢?] = 62
. EXcess risk is proportional to the data dimension.

. To achieve excess risk AZ < §, need:

o2d
n>—-
%)

samples.



