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Geometrical interpretation

ŷOLS = X ̂θOLS = XX+y

This gives a natural interpretation of the OLS predictor as an 
orthogonal projection of the labels in the row space of :X

̂θOLS = X+y ⇒

im(X) ⊂ ℝn

0

y

ŷ = PX⊤ y

min
z∈im(X)

| |y − z | |2
2



Statistical analysis of OLS
Fixed-design analysis
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yi = ⟨θ⋆, xi⟩ + εi
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Where does OLS 

fit here?
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Given a batch of data sampled from this model:

y = Xθ⋆ + ε ∈ ℝn

Our goal is to understand the statistical properties of OLS. 
For simplicity, assume that  ( ):rank(X) = d n > d

̂θOLS(X, y) = (X⊤X)−1X⊤y = (X⊤X)−1X⊤(Xθ⋆ + ε)
= (X⊤X)−1X⊤Xθ⋆ + (X⊤X)−1X⊤ε

= θ⋆ +
1
n

Σ̂−1
n X⊤ε

Where we have defined  (Empirical covariance)Σ̂n =
1
n

X⊤X ∈ ℝd×d
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Decomposition of OLS

“signal” “noise”

In particular:

• Bias:

• Variance: Varε [ ̂θOLS(X, y)] =
σ2

n
Σ̂−1

n

“Unbiased”

Hence, informally:

̂θOLS → θ⋆ as n → ∞ “Consistency”

𝔼ε [ ̂θOLS(X, y)] = θ⋆
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Therefore, we have the following final result for the excess 
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Remarks:

• Excess risk is proportional to the noise level .𝔼[ε2] = σ2

• Excess risk is proportional to the data dimension.

• To achieve excess risk , need:Δℛ < δ

n >
σ2d
δ

samples. 


