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Summary of ERM

let D ={(x,y) €T XY :i=1,...,n} denote training data
sampled i.i.d. from p.

Given a choice of:

« Parametric hypothesisclass#Z ={f,: & - % : 0 € O}
» Lossfunction?: I'x¥% — R,

Empirical Risk Minimisation consists of:
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- What optimisation procedure to choose?
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Is typically a non-convex function of 9 € 6.

- How large n needs to be (with respect to p, d) so that
6 € argmin F(0) has low training and/or test error?

- What properties of the data distribution p makes the
poroblem easier / harder?
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Let D = {(x,y,) € RIXR :i=1,...,n} denote the training data.
Ordinary least-squares (OLS) regression Is defined as:
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Least-squares regression

Let D = {(x,y,) € RIXR :i=1,...,n} denote the training data.
Ordinary least-squares (OLS) regression Is defined as:

R 1
min £ (0) .= — — X0
min 2,(6) := 51y — X0}

Where we have defined the data matrix X € R™ and label
vectory € R"



Bayes risk for OLS

Remarks:

. This corresponds to an ERM problem on the class
of linear functions:

F = {f(x) =(0,x) : 0 € RY)

with the square loss functions:

1
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Bayes risk for OLS

Remarks:

. This corresponds to an ERM problem on the class
of linear functions:

# = {fyx) = (0,x) : 0 € R
with the square loss functions:

1
o) =5 (o — )

. The Bayes predictor and risk are given by:

1 ] -
f*(x) = E[y|x] 9?* — [F E(y_ _[y‘x])Z &) Exercise:

NV show this.




INntercept

Remarks:

. Without loss of generality, can add an intercept:
Jox) =(0,x) + b

By redefining:



Inductive bias of OLS

Remarks:

. Inductive bias: can only fit affine functions of x € R?

X Noisy data X
80 F =— Linear it

60 X x
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Convexity of OLS

A 1
R ,(0) :=%\|y—X0H§

Va\

1
. Gradient: VA, = — —X'(y — X0) € R?
n

A | ~
. Hessian: Vg%n =—X'X e R™ (:=X)
n

Since XX = 0, %, is convex over R% This implies that any
mMminimum of &, is a global minimum.

Forn >d, é?fn is strictly convex if and only if rank(X'X) = d. This
iImplies that £, can have at most one global minimum.
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Closed-form solution

Va\

1
.+ Gradient: VypHA, = — — X" (y — X0) € R?
n

If It exists, a minima must satisfy:

!

Vo &, =0 & X"X0 =Xy
This is precisely the definition of the pseudo-inverse:

Oors = X"y

X' X)Xy ifu>d

f rank(X) = min(n.d): 0y ¢ =
A OLS {XT(XXT)—ly if n < d



Geometrical interpretation

This gives a natural interpretation of the OLS predictor as an
orthogonal projection of the labels in the row space of X:

Oors =Xy = Vors = X0o15 = XXy

im(X) C R”

- 2
min ||y —z][5
zeim(X)



TwO scenarios

From now on, let's assume X is full-rank.

- Forn>d:more equations than variables. X0 =y admits an

unigue solution.
X e Rnxd




TwO scenarios

From now on, let's assume X is full-rank.

- Forn>d:more equations than variables. X0 =y admits an

unigue solution.
X e Rnxd

« Forn <d:more variables than equations. X0 =y admits several
solutions.

X e Rnxd

R4 7\ R”"
. @
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Assume rank(X) = n < d . Then, OLS admits the following
Interpretation as the minimum #,-norm solution:
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