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Recap of
Probability

The butter of statistical learning
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. Discrete: when the possible outcomes are countable.

Examples: + the outcome of tossing a coin X € {head, tail}
. rollingadiceX € {1,...,6}

. The number of people in France X € N
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Random variable

A random variable X mathematically formalises the notion of
a “measurement” or “random event”. It can be:

. Continuous: when the possible outcomes are uncountable.

Examples: + Thetemperature in the room X € R

. The GDP of France nextyear X € R

Continuous r.v.s are described by their probability density
function (p.d.f.), which integrates to probabilities:

b
P(X € [a,b]) = [ dx py(x)

A “function” that integrates to one:

Y supp(X)

dx px(x) =1

A The p.d.f. is NOT a probability. It can be negative.
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Normal distribution

A Gaussian rv. X ~ N (u, 6%) has the following p.d.f:
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Expectation and variance

Let X ~ py denote a continuous r.v.

. The expectation (or mean) of X is defined as

E[X] = [dx py(x)x

For example, for X ~ A (u, 62), we have E[X] = u




Expectation and variance

Let X ~ py denote a continuous r.v.

. The expectation (or mean) of X is defined as

E[X] = [dx py(x)x

For example, for X ~ A (u, 02), we have E[X] = u

. The variance of X is defined as:

Var[X] = E[(X - E[X])’] = E[X*] — E[X]*

For example, for X ~ A (u, 6°), we have Var[X] = ¢°
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Change of variables

Let X ~ py denote a continuousrv.andf: R = R

Then, Y = f(X) is also a random variable, with p.d.f.
gliven by

py(y) = de px(x)o(y — f(x))

Where 0(x) is the “Dirac delta function”

J dx 8(x — V) = )
R
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Joint distribution

Two random variables X, Y that concern the same random
experiment are characterised by their joint p.d.f.

Px.y(x,y)

The correlation between X, Y is defined by

E[XY] = |dx |dy py y(x, y)xy

We say X, Y are uncorrelated if E| XY | = E[X]E[Y]
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Independence

. Giventwo rvs X, Y ~ py y, we define the marginal distributions
Px(x) = de PX,Y(X, y) py(y) = de PX,Y(X, y)

. We saythervs. X, Y are independent if

Px y(X, y) = px(X)py(x)

Note that independence implies uncorrelated,
but not the converse!
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Exercise: Construct a counter-example
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Conditional distribution

. Giventwo rvs X, ¥ ~ py y, we define the conditional p.d.f.

pX,Y(xa y)
py(y)

leY(x |y) =

Note that X, ¥ ~ py yare independent if and only if:

leY(x | y) = px(x)

leX(y | X)px(x)
py(y)

Px y(x|y) =



Law of large numbers

Let Xy, ..., X, ~ pydenote iid. rv.s. with mean E[X;] = u

Define the sample mean (note this is itself a r.v.)
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Law of large numbers

Let Xy, ..., X, ~ pydenote iid. rv.s. with mean E[X;] = u

Define the sample mean (note this is itself a r.v.)

1Y
x;:zg;g

P
X, = U as n — o0

lim P(|X, —u| <e) =1

n—oo

A Be aware there are many variations of the LLN.



Central IImit theorem

Let X{, ..., X ~ pydenoteiid.rv.s. with mean E[X.] = u
and variance Var(X;) = 6> < 00

Again, consider the sample mean
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Central IImit theorem

Let X{, ..., X ~ pydenoteiid.rv.s. with mean E[X.] = u
and variance Var(X;) = 6> < 00

Again, consider the sample mean

_ 1 «
anzizzl)(i

V@&, — ) S (0.6

lim P\/n(X,—u) <z)=P(Z<zlo) Z~ H0,1])

n—0odo

A Be aware there are many variations of the CLT.
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Supervised Learning

Inputs / covariatesx € &

X3

i =Y
N1 Y2 )3
Not grumpy Grumpy 7707

Outputs/ Labels/response y € ¥
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Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

. The input space & Is often assumed to be
a vector space I c RY. But keep in mind

IN real life it can be any data structure
(e.g. a pandas.DataFrame)

- The output space % is often assumed to
be a subset ¥ C R.

- In particular, if |%| =k is a discrete set, we
say we have a classification problem.

. If % Is a continuous set, we say we have a
regression problem

It Is very commmon to consider a one-hot
A encoding ¥ = {0,1}* in classification.



Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Examples of classification:

« Grumpy vs. Non-grumpy cats
Z = {photos of cats}, ¥ = {grumpy, not grumpy }

E-mail spam detection
2 = {your inbox }, ¥ = {spam, not spam}

Medical diagnosis
2 = {medical data}, ¥ = {diseases}

. Sentiment analysis
X = {text}, ¥ = {positive, negative, neutral }



Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Examples of regression:

. Temperature prediction
=R’ % =R

. Stock price prediction
A = {list of stocks}, =R,

Life expectancy
A = {medical data}, ¥ =R,

- ANy price, cost, iIncome, etc. prediction.
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Supervised Learning

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

INn supervised learning, our goal is to use the data to learn a
function that correctly assigns the labels to the responses.

f:d—Y

A For classification, it Iscommon to define instead:

f: I - 10,1117

Where f(x) is a vector of class probabilities. In this case,
final prediction is given by:

y = argmax f(x)
kel |
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let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

INn supervised learning, our goal is to use the data to learn a
function that correctly assigns the labels to the responses.

f:d—Y

Two key words: correctly and learn.
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| 0ss function

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

INn supervised learning, our goal is to use the data to learn a
function that correctly assigns the labels to the responses.

f:d—Y

Two key words: correctly and learn. To quantify the first, it is
common to introduce a loss function:

CrY XY =Ry

Q For classification this will also depend on the
encoding.
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Regression losses

Examples in regression:

1
. Square loss: #(y, 7) = E(y — 7)?

~+, Exercise:

A The square loss Is sensitive to outliers & chow this

Predicted Value v



Regression losses

Examples in regression:

1
. Square loss: #(y, 7) = E(y — 7)?

. Absolute loss: €(y,2) = |y — z|

Predicted Value v



Regression losses

Examples in regression:

S(y = 2)? if [|y—z <6

. Huber loss: Z5(y,z) = i .
5(|y—Z|—35) if |y—z[>6

|}
4.0 \ Huber loss (d = 0.5)

\ e Huber Loss (6 = 1)
\ —— Huber Loss (& = 2)
=== True value y
3.0 \ '
2.5
o
§ 2.0f
1.5
1.0F
0.5
OF

Predicted Value ¥



Classification losses

Examples in binary classification % = {—1,+ 1}:
Il ty—2z<0
0 otherwise

. O1loss: #(y,2)=6,, (or £(y,2) =0y —2) = { )
. Logistic loss: #(y, z) = log(1 + e™%)

- Hinge loss: £(y, z) = max(0,1 — yz)

3.0 : —— 0/1 loss
— Logistic Loss
Hinge Loss
-= True value y
2.0F
915
3 .
1.0F
0.5 \
i
-2 -1 0 1 2 3 4

Predicted Value ¥



Empirical risk

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Given a lossfunction 7 : ¥ x % - R,,and a predictorf: & - %
define the empirical risk:

A |
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Also known as the training loss.



Empirical risk

let D = {(x;,y)) e T XY :i=1,...,n} denote the training data.

Given a lossfunction 7 : ¥ x % - R,,and a predictorf: & - %
define the empirical risk:

A |
Rof) == D C 0 S)
=1

Also known as the training loss. This qguantifies how well we fit
the data. But is this a good notion of learning?

f(X)={yi txes R =0

>

0O otherwise



Probabilistic framework

Instead, we would like predictors that do well on unseen data.



Probabilistic framework

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.



Probabilistic framework

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

Q . The “l.i.d." assumption might not always hold.
(Sampling bias, distribution shift, etc.)

. Under this assumption, &, is a random function.
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Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

Define the notion of population risk of a predictor f: & - ¥

R(f) = E [£(y, f(x))]

Also known as the generalisation or test error.



Population risk

Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution p over &' X %

(xia yl) Np .1.dl.

Define the notion of population risk of a predictor f: & - ¥

R(f) = E [£(y, f(x))]

Also known as the generalisation or test error.

A R 1s a deterministic function of the predictor f



