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Recap of 

Probability

The butter of statistical learning
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Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

• Discrete: when the possible outcomes are countable.

Discrete r.v.s are described by their probability distribution

ℙ(X = k)

∑
k∈supp(X)

ℙ(X = k) = 1

Examples: • the outcome of tossing a coin X ∈ {head, tail}
• rolling a dice X ∈ {1,…,6}

• The number of people in France  X ∈ ℕ

A positive “function” that sums to one.
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A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:
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Examples: • The temperature in the room X ∈ ℝ
• The GDP of France next year X ∈ ℝ
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Random variable
A random variable  mathematically formalises the notion of 
a “measurement” or “random event”. It can be:

X

Examples: • The temperature in the room X ∈ ℝ
• The GDP of France next year X ∈ ℝ

∫supp(X)
dx pX(x) = 1A “function” that integrates to one:

The p.d.f. is NOT a probability. It can be negative.

ℙ(X ∈ [a, b]) = ∫
b

a
dx pX(x)

Continuous r.v.s are described by their probability density 
function (p.d.f.), which integrates to probabilities:

• Continuous: when the possible outcomes are uncountable.
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A Gaussian r.v.  has the following p.d.f.:X ∼ 𝒩(μ, σ2)

pX(x) =
1

2πσ2
e− (x − μ)2

2σ2



Normal distribution

A Gaussian r.v.  has the following p.d.f.:X ∼ 𝒩(μ, σ2)

pX(x) =
1

2πσ2
e− (x − μ)2

2σ2

High-probability

Low-probability



Expectation and variance
Let  denote a continuous r.v.X ∼ pX

• The expectation (or mean) of  is defined asX

𝔼[X] = ∫ dx pX(x)x

For example, for , we have X ∼ 𝒩(μ, σ2) 𝔼[X] = μ



Expectation and variance
Let  denote a continuous r.v.X ∼ pX

• The expectation (or mean) of  is defined asX

𝔼[X] = ∫ dx pX(x)x

For example, for , we have X ∼ 𝒩(μ, σ2) 𝔼[X] = μ

• The variance of  is defined as:X

Var[X] = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − 𝔼[X]2

For example, for , we have X ∼ 𝒩(μ, σ2) Var[X] = σ2
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Change of variables
Let  denote a continuous r.v. and X ∼ pX f : ℝ → ℝ

Then,  is also a random variable, with p.d.f. 
given by

Y = f(X)

pY(y) = ∫ dx pX(x)δ(y − f(x))

Where  is the “Dirac delta function”:δ(x)

∫ℝ
dx δ(x − y)f(x) = f(y)



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)

The correlation between  is defined byX, Y

𝔼[XY ] = ∫ dx∫ dy pX,Y(x, y)xy



Joint distribution
Two random variables  that concern the same random 
experiment are characterised by their joint p.d.f.

X, Y

pX,Y(x, y)

The correlation between  is defined byX, Y

𝔼[XY ] = ∫ dx∫ dy pX,Y(x, y)xy

We say  are uncorrelated if X, Y 𝔼[XY] = 𝔼[X]𝔼[Y]
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Independence

• We say the r.v.s.  are independent ifX, Y

pX,Y(x, y) = pX(x)pY(x)

• Given two r.v.s , we define the marginal distributionsX, Y ∼ pX,Y

pX(x) = ∫ dy pX,Y(x, y) pY(y) = ∫ dx pX,Y(x, y)

Note that independence implies uncorrelated, 
but not the converse!

Exercise: Construct a counter-example
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Conditional distribution

• Given two r.v.s , we define the conditional p.d.f.X, Y ∼ pX,Y

pX|Y(x |y) =
pX,Y(x, y)

pY(y)

Note that  are independent if and only if:X, Y ∼ pX,Y

pX|Y(x |y) = pX(x)



pX|Y(x |y) =
pY|X(y |x)pX(x)

pY(y)

Conditional distribution

• Given two r.v.s , we define the conditional p.d.f.X, Y ∼ pX,Y

pX|Y(x |y) =
pX,Y(x, y)

pY(y)

Note that  are independent if and only if:X, Y ∼ pX,Y

pX|Y(x |y) = pX(x)

Theorem (Bayes theorem)



Law of large numbers

Define the sample mean (note this is itself a r.v.)

X̄n =
1
n

n

∑
i=1

Xi

Let  denote i.i.d. r.v.s. with mean X1, …, Xn ∼ pX 𝔼[Xi] = μ



Law of large numbers
Let  denote i.i.d. r.v.s. with mean X1, …, Xn ∼ pX 𝔼[Xi] = μ

Define the sample mean (note this is itself a r.v.)

X̄n =
1
n

n

∑
i=1

Xi

Theorem (Weak LLN)

X̄n
P→ μ n → ∞as

lim
n→∞

ℙ( | X̄n − μ | < ϵ) = 1

Be aware there are many variations of the LLN.



Central limit theorem
Let  denote i.i.d. r.v.s. with mean  
and variance 

X1, …, Xn ∼ pX 𝔼[Xi] = μ
Var(Xi) = σ2 < ∞

Again, consider the sample mean

X̄n =
1
n

n

∑
i=1

Xi



Central limit theorem
Let  denote i.i.d. r.v.s. with mean  
and variance 

X1, …, Xn ∼ pX 𝔼[Xi] = μ
Var(Xi) = σ2 < ∞

Again, consider the sample mean

X̄n =
1
n

n

∑
i=1

Xi

Theorem (Lindeberg CLT)

n(X̄n − μ) d→ 𝒩(0,σ2)

lim
n→∞

ℙ( n(X̄n − μ) ≤ z) = ℙ(Z ≤ z /σ)

Be aware there are many variations of the CLT.

Z ∼ 𝒩(0,1)
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Supervised Learning

GrumpyNot grumpy ???

x1 x2 x3

y1 y2 y3

f : 𝒳 → 𝒴

Inputs / covariates x ∈ 𝒳

Outputs / Labels / response y ∈ 𝒴
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Supervised Learning
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

• The input space  is often assumed to be 
a vector space  . But keep in mind 
in real life it can be any data structure 
(e.g. a pandas.DataFrame)

𝒳
𝒳 ⊂ ℝd

• The output space  is often assumed to 
be a subset .

𝒴
𝒴 ⊂ ℝ

• In particular, if  is a discrete set, we 
say we have a classification problem.

|𝒴 | = k

• If  is a continuous set, we say we have a 
regression problem

𝒴

It is very common to consider a one-hot 

encoding  in classification.𝒴 = {0,1}k



Supervised Learning
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

• Grumpy vs. Non-grumpy cats

, 𝒳 = {photos of cats} 𝒴 = {grumpy, not grumpy}

Examples of classification:

• E-mail spam detection

, 𝒳 = {your inbox} 𝒴 = {spam, not spam}

• Medical diagnosis

, 𝒳 = {medical data} 𝒴 = {diseases}

• Sentiment analysis

, 𝒳 = {text} 𝒴 = {positive, negative, neutral}



Supervised Learning
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

• Temperature prediction

, 𝒳 = ℝ3 𝒴 = ℝ

Examples of regression:

• Stock price prediction

, 𝒳 = {list of stocks} 𝒴 = ℝ+

• Life expectancy

, 𝒳 = {medical data} 𝒴 = ℝ+

• Any price, cost, income, etc. prediction.
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Supervised Learning
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

In supervised learning, our goal is to use the data to learn a 
function that correctly assigns the labels to the responses.

f : 𝒳 → 𝒴

For classification, it is common to define instead: 

f : 𝒳 → [0,1]|𝒴|

Where  is a vector of class probabilities. In this case, 
final prediction is given by:

f(x)

̂y = argmax
k∈|𝒴|

f(x)
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Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

In supervised learning, our goal is to use the data to learn a 
function that correctly assigns the labels to the responses.

f : 𝒳 → 𝒴

Two key words: correctly and learn. To quantify the first, it is 
common to introduce a loss function:

ℓ : 𝒴 × 𝒴 → ℝ+

For classification this will also depend on the 
encoding.

Loss function



Examples in regression:

• Square loss: ℓ(y, z) =
1
2

(y − z)2

Regression losses



Examples in regression:

• Square loss: ℓ(y, z) =
1
2

(y − z)2

The square loss is sensitive to outliers Exercise: 

show this.

Regression losses



Examples in regression:

• Square loss: ℓ(y, z) =
1
2

(y − z)2

• Absolute loss: ℓ(y, z) = |y − z |

Regression losses



Regression losses
Examples in regression:

• Huber loss: ℓδ(y, z) =
1
2 (y − z)2 if | |y − z | ≤ δ

δ( |y − z | − 1
2 δ) if |y − z | > δ



Classification losses
Examples in binary classification :𝒴 = {−1, + 1}

• 0/1 loss: ℓ(y, z) = δyz

• Logistic loss: ℓ(y, z) = log(1 + e−yz)

• Hinge loss: ℓ(y, z) = max(0,1 − yz)

(or )ℓ(y, z) = θ(y − z) = {1 if y − z ≤ 0
0 otherwise



Empirical risk
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

Given a loss function , and a predictor 
define the empirical risk:

ℓ : 𝒴 × 𝒴 → ℝ+ f : 𝒳 → 𝒴

ℛ̂n( f ) =
1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the training loss.




Empirical risk
Let  denote the training data.𝒟 = {(xi, yi) ∈ 𝒳 × 𝒴 : i = 1,…, n}

Given a loss function , and a predictor 
define the empirical risk:

ℓ : 𝒴 × 𝒴 → ℝ+ f : 𝒳 → 𝒴

ℛ̂n( f ) =
1
n

n

∑
i=1

ℓ(yi, f(xi))

Also known as the training loss. This quantifies how well we fit 
the data. But is this a good notion of learning?

f(x) = {yi if x ∈ 𝒟
0 otherwise

⇒ ℛ̂n = 0
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Probabilistic framework
Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution  over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

• The “i.i.d.” assumption might not always hold.

(Sampling bias, distribution shift, etc.)

• Under this assumption,  is a random function.ℛ̂n
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(xi, yi) ∼ p i.i.d.

Define the notion of population risk of a predictor :f : 𝒳 → 𝒴

ℛ( f ) = 𝔼 [ℓ(y, f(x))]
Also known as the generalisation or test error.



Instead, we would like predictors that do well on unseen data.

Assume there is an underlying data distribution  over :p 𝒳 × 𝒴

(xi, yi) ∼ p i.i.d.

Define the notion of population risk of a predictor :f : 𝒳 → 𝒴

ℛ( f ) = 𝔼 [ℓ(y, f(x))]
Also known as the generalisation or test error.

 is a deterministic function of the predictor ℛ f

Population risk


