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1 Setting

Consider a supervised regression setting with training data D = {(xi, yi) ∈ Rd × R : i ∈ [n]}. In this
lecture, we will be interested in the analysis of ridge regressor f(x; θ̂λ) = 〈θ̂λ,x〉 with:

θ̂λ(X,y) := argmin
θ∈Rd

1

n

n∑
i=1

(yi − 〈θ,xi〉)2 + λ||θ||22 (1.1)

=
(
X>X + nλId

)−1
X>y (1.2)

where X ∈ Rn×d and y ∈ Rn denote the covariate matrix and response vector, obtained by stacking
xi ∈ Rd and yi ∈ R row-wise. Since the ridge predictor is a linear function, it can only express linear
dependences on the data. Therefore, it is natural to assume that data has been independently drawn
from a linear model:

yi = 〈θ?,xi〉+ εi. (1.3)

In particular, we will be interested in analysing the so-called random design setting.

Assumption 1. Throughout this lecture, we assume that:

• Gaussian covariates, i.e. xi = Σ1/2zi with zi ∼ N (0, Id) and Σ � 0 a positive-definite matrix.

• The label noise are drawn independently from xi, are zero-mean and have finite variance E[ε2i ] =
σ2 <∞.

• The target weights have finite norm ||θ?||22 <∞.

Note that the above implicitly define a joint distribution p(x, y). In particular, the Bayes risk is
given by the noise variance R? = σ2, and corresponds to the Bayes predictor f?(x) = 〈θ?,x〉.

Our goal is to derive a precise characterisation of the excess risk:

R(θ̂λ)− σ2 = Ex
[(
f?(x)− f(x; θ̂λ)

)2]
(1.4)

= 〈θ̂λ − θ?,Σ(θ̂λ − θ?)〉 (1.5)

:= ||θ̂λ − θ?||2Σ (1.6)
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where in the last equality we simply recognised the definition of the Mahalanobis norm. In other
words: the excess risk is a mean-squared error weighted by the most relevant directions in the data
(i.e. with largest eigenvalues).

Note that the excess risk above is a random quantity (since θ̂λ(X,y) is a function of the training
data, which is random). To simplify the analysis, we will rather consider the average of the expected
risk with respect to the label noise:

Eε
[
R(θ̂λ)

]
− σ2 = Eε

[
||θ̂λ − θ?||2Σ

]
(1.7)

With more work, one can show concentration of R(θ̂λ) over ε under an additional sub-Gaussian
assumption.

4! Eε
[
R(θ̂λ(X,y))

]
is still a random quantity since it depends on the random data X,y.

2 Bias-variance decomposition

In regression problems with additive noise yi = f?(xi) + εi, it is common to write the expected excess
risk in terms of a (squared) bias and variance decomposition with respect to the label noise:

Eε
[
R(θ̂λ)

]
− σ2 = B(f?,X, λ) + V (X, λ) (2.1)

where:

B(f?,X, λ) = Ex
[
(f?(x)− Eε[f(x; θ̂)])2

]
(2.2)

V (X, λ) = Varε(f(x; θ̂)) = Ex,ε
[
(f(x; θ̂)− Eε[f(x; θ̂)])2

]
(2.3)

In particular, note that the variance is independent of the target function f?.

4! Note that the (squared) bias and variance are defined with respect to the training data label
noise ε ∈ Rn. In particular, they are still random functions of X.

Explicit expressions for the bias and variance can be worked out from the definition. But in our
case it is simpler to note that we can write:

θ̂λ(X,y) =
(
X>X + nλId

)−1
X>(Xθ? + ε) (2.4)

=
(
X>X + nλId

)−1
X>Xθ? +

(
X>X + nλId

)−1
X>ε (2.5)

(a)
=
(
X>X + nλId

)−1
(X>X + nλId − nλId)θ? +

(
X>X + nλId

)−1
X>ε (2.6)

= θ? − nλ
(
X>X + nλId

)−1
θ? +

(
X>X + nλId

)−1
X>ε (2.7)

where in (a) we added and subtracted nλId. Therefore, we have:

Eε
[
R(θ̂λ)

]
− σ2 = Eε

[
||θ̂λ − θ?||2Σ

]
(2.8)

= (nλ)2〈θ?,
(
X>X + nλId

)−1
Σ
(
X>X + nλId

)−1
θ?〉

+ σ2 Tr

{
X>X

(
X>X + nλId

)−1
Σ
(
X>X + nλId

)−1}
(2.9)

where we used that which allow us to identify:

B(θ?,X, λ) = (nλ)2〈θ?,
(
X>X + nλId

)−1
Σ
(
X>X + nλId

)−1
θ?〉 (2.10)

V (X, λ) = σ2 Tr

{
X>X

(
X>X + nλId

)−2
Σ

}
(2.11)

2



where in the last expression we used the fact that the matrices inside the trace commute. It is also
common to see the expressions above written in terms of the data empirical covariance matrix:

Σ̂n :=
1

n

n∑
i=1

xix
>
i =

1

n
X>X (2.12)

which reads:

B(θ?,X, λ) = λ2〈θ?,
(
Σ̂n + λId

)−1
Σ
(
Σ̂n + λId

)−1
θ?〉 (2.13)

V (X, λ, σ2) =
σ2

n
Tr

{
Σ̂n

(
Σ̂n + λId

)−2
Σ

}
(2.14)

Characterising the behaviour of the quantities above becomes, at this point, a random matrix theory
problem. Before looking at the general result, let’s do a warm up.

2.1 Warm-up: ordinary least-squares

We now consider the ordinary least-squares case λ = 0, which is equivalent to solving a system of n
equations with d unknowns:

X>Xθ
!

= X>y (2.15)

For n ≥ d, since X>X ∈ Rn×n is invertible with high-probability, the solution to this problem is
unique. For n < d, X>X is rank defficient, i.e. we have a linear system with more unknowns than
variables, and many solutions exist. These solutions can be explicitly written as:

θ̂v(X,y) = X+y + v (2.16)

whereX+ is the Moore-Penrose inverse ofX and v is any vector in the kernel ofX>X. One particular
solution is the least-norm solution for which v = 0, and corresponds to the λ→ 0+ limit of the ridge
estimator θ̂λ.

Interestingly, the bias and variance of the ordinary least-squares estimator can be easily computed
when n > d+ 1. Since Σ̂n is almost surely invertible in this case, we have:

B(θ?,X, λ = 0+) = 0 (2.17)

V (X, λ = 0+, σ2) =
σ2

n
Tr
{

Σ̂−1n Σ
}

(2.18)

i.e. the excess risk is fully given by the variance. Writing X = ZΣ1/2 for Z a Gaussian i.i.d. matrix
with zero mean and unit variance, we have:

V (X, λ = 0+, σ2) = σ2 Tr
{

(Z>Z)−1
}

(2.19)

Curiously, this is independent of the data covariance matrix. The random matrix (Z>Z)−1 is an
inverse Wishart matrix with n degrees-of-freedom, a well-studied random matrix ensemble. In partic-
ular, its mean is equal to:

E[(Z>Z)−1] =
1

n− d− 1
Id (2.20)

implying that:

E[V (X, λ = 0+, σ2)] =
σ2d

n− d− 1
(2.21)
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This result in expectation can be turned into a high-probability bound for the excess risk when
n → ∞.1 Curiously, this expression is fairly close to the excess risk under fixed design setting
E[R]− σ2 = σ2d/n, and imply that under the well-specified case the risk converges to zero at a O(n−1)
rate as n→∞. An alternative but asymptotic way to get this result is to recognise that this is exactly
the z → 0 limit of the Stieltjes transform of the Marchenko-Pastur distribution.

3 High-dimensional asymptotics

We now leverage the random matrix theory results discussed in the previous lecture to provide a sharp
characterisation of the bias variances in the high-dimensional proportional asymptotics n, d→∞ with
d/n→ γ = Θ(1). Recall that in the previous lecture we have shown that:

Theorem 1. Let Σ̂n = 1/nX>X ∈ Rd×d with X = ZΣ1/2, where Z is a sub-Gaussian matrix with
zero mean and unit variance and Σ ∈ Rd×d is a positive-definite matrix with eigenvalues spec(Σ) =
{λk : k ∈ [d]} ⊂ R+ and bounded operator norm ||Σ||op < C. Assume that the empirical measure of
eigenvalues µ̂n = 1/d

∑
i∈[d] δλi converges (weakly) to a probability distribution µ on R+ with compact

support as d→∞. Then, for any A,B ∈ Rd×d with bounded operator norm, the following asymptotic
equivalents hold in the proportional limit where d→∞ with d/n→ γ > 0:

Tr{A(Σ̂n − zId)−1} � −
1

zs̃(z)
Tr

{
A

(
Σ +

1

s̃(z)
Id

)−1}
(3.1)

Tr{A(Σ̂n − zId)−1B(Σ̂n − zId)−1} �
1

z2s̃(z)2
Tr

{
A

(
Σ +

1

s̃(z)
Id

)−1
B

(
Σ +

1

s̃(z)
Id

)−1}

+
1

z2s̃(z)2

Tr

{
A
(
Σ + 1

s̃(z)Id

)−2
Σ

}
· Tr

{
B
(
Σ + 1

s̃(z)Id

)−2
Σ

}
n− Tr {Σ2(Σ + 1/̃s(z)Id)−2}

(3.2)

where s̃(z) is the unique solution of the following self-consistent equation:

1

s̃(z)
+ z =

γ

d
Tr
{
Σ(s̃(z)Σ + Id)

−1} (3.3)

Remark 1. Note that in eq. (3.1) and (3.2) we used the asymptotic equivalent notation “�′′. We
say an � bn as n → ∞ if an = Θ(bn) or equivalently an = O(bn) and bn = O(an) see ?? for a
detailed discussion. In particular, this implies that limn→∞ an/bn → 1. When employing this notation
in our context, we are always referring to the proportional asymptotical limit, and when dealing with
random quantities the convergence will be almost surely or in probability. When both sides of � are
of the same order in n, this implies convergence (a.s. or in probability) of the normalised quantities,
e.g. an/n → bn/n if an, bn = Θ(n). Therefore, the main convenience of this notation is to speak of
asymptotic limits without having to care for the normalisation of the quantities involved.

Now rewriting the bias and variance in the form of eqs. (3.2) and (3.2):

B(θ?,X, λ) = λ2 Tr

{
θ?θ

>
?

(
Σ̂n + λId

)−1
Σ
(
Σ̂n + λId

)−1}
(3.4)

V (X, λ, σ2) =
σ2

n
Tr

{
Σ
(
Σ̂n + λId

)−1}
− λσ2

n
Tr

{
Σ
(
Σ̂n + λId

)−2}
(3.5)

1For instance, by showing that ETr
[
(Z>Z)−1

]2
is vanishing with n→∞.
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We can readily apply theorem 1. Let’s start with the bias. Using eq. (3.2) with A = θ?θ
>
? and B = Σ

evaluated at z = −λ give us:

B(θ?,X, λ) � 1

s̃(−λ)2
Tr

{
θ?θ?

(
Σ +

1

s̃(−λ)
Id

)−2
Σ

}

+
1

s̃(−λ)2

Tr

{
θ?θ?

(
Σ + 1

s̃(−λ)Id

)−2
Σ

}
· Tr

{
Σ2
(
Σ + 1

s̃(−λ)Id

)−2}
n− Tr {Σ2(Σ + 1/̃s(−λ)Id)−2}

=
1

s̃(−λ)2
θ>? Σ

(
Σ +

1

s̃(−λ)
Id

)−2
θ?

1 +

Tr

{
Σ2
(
Σ + 1

s̃(−λ)Id

)−2}
n− Tr {Σ2(Σ + 1/̃s(−λ)Id)−2}

 (3.6)

It will be convenient to define κ(λ) := 1/̃s(−λ) and rewrite the brackets1 + x
1−x = 1

1−x :

B(θ?,X, λ) � κ(λ)2〈θ?,Σ (Σ + κ(λ)Id)
−2 θ?〉

1− 1
n Tr {Σ2(Σ + κ(λ)Id)−2}

(3.7)

The variance is composed of two terms. For the first, we use eq. (3.1) with A = Σ:

σ2

n
Tr

{
Σ
(
Σ̂n + λId

)−1}
� σ2κ(λ)

nλ
Tr
{

Σ (Σ + κ(λ)Id)
−1
}

(3.8)

while for the second we use eq. (3.2) with A = Σ and B = Id:

λσ2

n
Tr

{
Σ
(
Σ̂n + λId

)−2}
� σ2κ(λ)2

nλ
Tr
{

Σ (Σ + κ(λ)Id)
−2
}1 +

Tr
{

Σ2 (Σ + κ(λ)Id)
−2
}

n− Tr {Σ2(Σ + κ(λ)Id)−2}


=
σ2κ(λ)2

nλ

Tr
{

Σ (Σ + κ(λ)Id)
−2
}

1− 1
n Tr {Σ2(Σ + κ(λ)Id)−2}

(3.9)

Putting together:

V (X, λ, σ2) � σ2κ(λ)

nλ

Tr
{

Σ (Σ + κ(λ)Id)
−1
}
− κ(λ)

Tr
{

Σ (Σ + κ(λ)Id)
−2
}

1− 1
n Tr {Σ2(Σ + κ(λ)Id)−2}

 (3.10)

Noting that we can write:

κTr
{

Σ (Σ + κId)
−2
}

= Tr
{

(Σ + κId −Σ)Σ (Σ + κId)
−2
}

= Tr
{

Σ (Σ + κId)
−1
}
− Tr

{
Σ2 (Σ + κId)

−2
}

(3.11)

We can equate the denominator and simplify the first term:

V (X, λ, σ2) � σ2κ(λ)

nλ
Tr
{
Σ2(Σ + κ(λ)Id)

−2} 1− 1
n Tr

{
Σ(Σ + κ(λ)Id)

−1}
1− 1

n Tr {Σ2(Σ + κ(λ)Id)−2}

(a)
= σ2

Tr
{

Σ2 (Σ + κ(λ)Id)
−2
}

n− Tr {Σ2(Σ + κ(λ)Id)−2}
(3.12)

where in (a) we used the self-consistent equation eq. (3.3) to rewrite 1/nTr
{
Σ(Σ + κΣ)−1

}
= 1− λ/κ.

Summarising, this leads to the following result:
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Proposition 1 (Asymptotic risk of ridge regression). Under Assumption 1, the asymptotic excess
risk of the ridge regressor eq. (1.1) converges, in the proportional limit n, d→∞ with d/n→ γ > 0 is
given by:

Eε
[
R(θ̂λ)

]
− σ2 a.s.−−→ B(θ?,Σ, λ, γ) + V(Σ, λ, σ2, γ), as n, d→∞ (3.13)

where the asymptotic bias B and variance V are given by:

B(θ?,Σ, λ, γ) =
κ(λ)2〈θ?,Σ (Σ + κ(λ)Id)

−2 θ?〉
1− 1

n Tr {Σ2(Σ + κ(λ)Id)−2}

V(Σ, λ, σ2, γ) = σ2
Tr
{

Σ2 (Σ + κ(λ)Id)
−2
}

n− Tr {Σ2(Σ + κ(λ)Id)−2}
(3.14)

where κ(λ) ≥ 0 is the unique solution of the following self-consistent equation:

1− λ

κ
=

1

n
Tr
{
Σ(Σ + κId)

−1} (3.15)

Remark 2. A few comments on this result are in order.

• Note that without loss of generality we can assume Σ to be a diagonal matrix Σ = diag(λ1, . . . , λd).
Therefore, a sufficient condition for different terms in proposition 1 to be well defined in the
asymptotic limit is that the empirical spectral measure of Σ admits a limit:

1

d

∑
λ∈spec(Σ)

δλ
weakly−−−−→ µ (3.16)

in which case all the traces can be written in terms of expectations with respect to µ, for example:

1

n
Tr{Σ(Σ + κId)

−1} −→ γ

∫
µ(dt)

t

t+ κ
, as n, d

d/n→γ−−−−→∞. (3.17)

• Nevertheless, we deliberately chose write the equations above in terms of traces since, despite
being derived in the proportional regime, the universality of these formulas is remarkable. For
instance, Cheng and Montanari (2024) have derived multiplicative, non-asymptotic rates for the
limit above under fairly generic assumptions on the covariates. These formulas hold even in the
d→∞ case where θ? can be seen as an element of a Hilbert space and Σ a covariance operator,
as it was first noted by Bordelon et al. (2020); Cui et al. (2021) and proven in (Misiakiewicz and
Saeed, 2024) under some conditions on the tail of the covariance spectrum.

3.1 Degrees-of-freedom interpretation

Proposition 1 involve the following two quantities, known in the literature as the degrees of freedom
of the matrix Σ:

df1(κ) := Tr{Σ (Σ + κId)
−1} =

d∑
j=1

λj
κ+ λj

(3.18)

df2(κ) := Tr{Σ2 (Σ + κId)
−2} =

d∑
j=1

λ2j
(κ+ λj)2

(3.19)

The degrees-of-freedom is a widespread notion in the signal processing and kernel literature, where it
is often used as a notion of effective dimension when comparing kernel operators defined on infinie
dimensional Hilbert spaces, see for example (Zhang, 2005; Caponnetto and De Vito, 2007).
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Figure 1: Degrees-of-freedom df1(λ) and hard count φ(λ) as a function of λ ≥ 0 for λi ∼ exp(i)
independently, i ∈ [n]

Note that df1, df2 are strictly decreasing functions of κ ≥ 0, and since Σ � 0 we have:

0 ≤ df2(κ) ≤ df1(κ) ≤ rank(Σ) (3.20)

with equality on the right for κ = 0. The degrees-of-freedom df1(κ),df2(κ) can be seen as a “soft
count” of how many eigenvalues are larger than the parameter κ, since eigenvalues λj � κ contribute
to the sum, while eigenvalues λj � κ are shrank. To make this relationship more quantitative, consider
the hard count of how many eigenvalues of Σ are larger than a certain value κ:

φ(κ) :=

d∑
j=1

1λj≥κ = #{k : λk ≥ κ}, (3.21)

Note 1−φ(κ) is the cumulative distribution function (c.d.f.) of the empirical spectral distribution µ̂Σ.
This can also be written as an integral over µ̂Σ:

φ(κ) = d

∫ ∞
κ

µ̂Σ(dλ) = d

∫
R

1λ≥κ(λ) µ̂Σ(dλ) (3.22)

to be compared with:

df1(κ) = d

∫
R

λ

λ+ κ
µ̂Σ(dλ) (3.23)

3.2 Equivalent denoising problem

The asymptotic formulas in proposition 1 have an intuitive interpretation in terms of an effectively
denoising problem. To see this, consider the problem of retrieving θ? ∈ Rd from the following noisy
observation:

u = Σ
1/2θ? +

τ√
n
z, z ∼ N (0, Id). (3.24)

where τ > 0 is the noise standard deviation. Then, the following regularised estimator:

θ̂den. = argmin
θ∈Rd

{
||u−Σ

1/2θ||22 + κ?||θ||22
}

(3.25)

is statistically equivalent to the one in proposition 1 in the proportional high-dimensional limit, as
long as we identify:

τ2 = σ2 + Ez[||θ̂den. − θ?||2Σ] (3.26)
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To see this, note that the quadratic problem in eq. (3.25) has explicit solution:

θ̂den. = (Σ + κ?Id)
−1Σ

1/2u

= (Σ + κ?Id)
−1Σ

1/2

(
Σ

1/2θ? +
τ√
n
z

)
(3.27)

= θ? − κ?(Σ + κ?Id)
−1θ? +

τ√
n

(Σ + κ?Id)
−1Σ

1/2z (3.28)

Hence, we have:

Ez
[
||θ̂den. − θ?||2Σ

]
= κ2?〈θ?,Σ(Σ + κ?Id)

−2θ?〉+
τ2

n
Tr
{
Σ2(Σ + κ?Id)

−2} (3.29)

It remains to find τ2. For that, we insert this in eq. (3.26) and solve for τ2 to yield:

τ2 =
σ2 − κ2?〈θ?,Σ(Σ + κ?Id)

−2θ?〉
1− 1

n Tr {Σ2(Σ + κ?Id)−2}
(3.30)

Inserting this back into eq. (3.29) give us:

Ez
[
||θ̂den. − θ?||2Σ

]
=

κ2?〈θ?,Σ (Σ + κ?Id)
−2 θ?〉

1− 1
n Tr {Σ2(Σ + κ?Id)−2}

+ σ2
Tr
{

Σ2 (Σ + κ?Id)
−2
}

n− Tr {Σ2(Σ + κ?Id)−2}
(3.31)

which is precisely the expression for the asymptotic excess risk from proposition 1.

Remark 3. Two comments are in order:

• The equivalent denoising problem gives a nice interpretation of the different quantities involved
in proposition 1. For instance, κ?(λ) appears exactly in the same role as λ in section 1, and
therefore plays the role of an effective, self-induced `2-regularisation.

• In fact, the self-induced regularisation is always larger than the original ridge regularisation.
This can be seen from studying the behaviour of the self-consistent eq. (3.15) for both γ > 1
and γ < 1:

– For γ < 1 (d < n), we have df1(κ(λ)) ≤ d < n, and therefore the self-consistent eq. (3.15)
implies:

0 ≤ 1− λ

κ
≤ γ. (3.32)

Since λ 7→ κ?(λ) is non-decreasing, the solution must satisfy:

κ?(λ) ∈
[
λ,

λ

1− γ

]
, . (3.33)

with in particular κ(0) = 0.

– For γ > 1 (d > n), the self-consistent eq. (3.15) has a solution κ?(0) > 0 defined by the
implicit equation:

df1(κ(0)) = n (3.34)

In other words, the effective regularisation is always larger or equal the original regularisation:
κ? ≥ λ. Since κ 7→ df1(κ) is a convex map, by Jensen’s inequality:

df1(κ(λ)) ≤ Tr Σ

κ(λ) + 1/dTr Σ
≤ Tr Σ

κ(λ)
(3.35)
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Figure 2: Excess risk of ridge regression as a function of γ = d/n for σ2 = 0.1, ||θ?||22 = 1 and isotropic
covariates Σ = Id. (Left) Increasing values of λ. (Right) Bias-variance decomposition of the excess
risk for the ridge interpolator λ = 0+ (a.k.a. ordinary least-squares estimator).

which from eq. (3.15) implies that:

0 ≤ 1− λ

κ(λ)
≤ Tr Σ

κ(λ)
(3.36)

and again, since λ 7→ κ(λ) is non-decreasing:

κ?(λ) ∈
[
λ, λ+

Tr Σ

n

]
(3.37)

Therefore, in both cases we have an effective regularisation larger than the original ridge regu-
larisation: κ?(λ) ≥ λ.

• Similarly, τ/
√
n plays a similar role to the noise level σ. It is interesting to note that in the

effective denoising problem, the effective noise level is itself a function of the excess risk, and is
a decreasing function of the number of samples n.

The denoising problem in eq. (3.24) and (3.25) is also known in the statistical literature as a
sequence model, see for example (Tsybakov, 2008).

3.3 Case study: isotropic covariates

Let’s explore our result on possibly the simplest setting, the case of isotropic covariates Σ = Id. In
this case, the self-consistent eq. (3.15) is simply a quadratic equation:

1− λ

κ
=

γ

1 + κ
(3.38)

This admits two solutions:

κ±(λ) =
1

2

(
λ− 1 + γ ±

√
(1− γ − λ)2 + 4λ

)
(3.39)

of which only the positive branch κ?(λ) := κ+(λ) is positive for λ ≥ 0. Further, the bias and variance
simplify to:

B(θ?, λ, γ) =
κ?(λ)2

(1 + κ?(λ))2 − γ
||θ?||22

V(λ, σ2, γ) =
σ2γ

(1 + κ?(λ))2 − γ
(3.40)
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Figure 2 (left) illustrates the asymptotic risk as a function of γ = d/n for different values on regular-
isation λ. Note that for small values of λ, the excess risk becomes a non-monotonic function of γ,
with a divergence developing at γ = 1 as λ → 0+. On fig. 2 (right), we plot the bias and variance
contribution to the excess risk in this limit, which shows that this divergence is mainly driven by the
variance. This behaviour can be understood from the explicit solution eq. (3.39). Note that:

lim
λ→0+

κ?(λ) =
1

2
(γ − 1 + |γ − 1|) =

{
γ − 1 γ > 1

0 γ ≤ 1
(3.41)

and therefore:

lim
λ→0+

B(θ?, λ, γ) =

{
0 γ ≤ 1

1− 1
γ γ > 1

(3.42)

lim
λ→0+

V(λ, σ2, γ) =

{
γσ2

1−γ γ < 1
σ2

γ−1 γ > 1
(3.43)

with a divergence going as V � O(1/|1− γ|) at around γ = 1.

Remark 4. A few comments are in order.

• Note that the γ < 1 solution is incredibly close to the non-asymptotic expression we found
directly by looking at the ordinary least-squares estimator in section 2.1 for n > d + 1, with
perfect agreement at the limit.

• However, the exact asymptotic formula also give us the behaviour of the least-square solution
in the γ ≥ 1 regime. The first curious observation is that at γ = 1 the variance blows up as
O(|γ−1|−1), and indeed this is precisely the case where the expected value of the inverse Wishart
distribution ceases to exist.

• Consistently to our general discussion in remark 3, for γ > 1 we have κ?(λ = 0+) = γ − 1 > 0.
Recall that from the equivalent denoising problem in eq. (3.25), κ? plays the role of the ridge
regularisation. This means that we have a non-zero, self-induced regularisation in the region
γ > 1. The larger γ, the stronger is this regularisation.

• In the regime γ > 1, the bias is also non-zero. This is intuitive since we are choosing one (the
minimum norm) among all the existing zero loss solutions in this regime. Curiously, the variance
also decreases for γ > 1.

• Although the singularity at γ = 1 resembles the double descent phenomenon observed in neural
networks, the minimum of the risk is achieved at the γ < 1 region, meaning that it is not
beneficial to take d > n. In other words, the minimum norm solution overfits.

3.4 Case study: the double descent phenomenon

The isotropic case captures the non-monotonic behaviour of the excess risk around the interpolation
threshold, but different from neural networks the least-norm solution in this case still overfits in the
“overparametrised” regime.

To discuss a model that captures the benign overfitting in neural networks, we need to consider a
richer, anisotropic model. Note that one of the limitations of the isotropic case is that the number of
parameters in the model f(x;θ) = 〈θ,x〉 is the same as the dimensionality of the covariates. Since the
covariates are isotropic, increasing the number of parameters is akin to increasing the dimensionality
of the covariate space, effectively decreasing the signal-to-noise ratio or sample complexity n/d of the
problem. This is different from neural networks with more than one-layer, e.g. f(x; θ) = 〈a, σ(Wx)〉
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with W ∈ Rp×d, where we can increase the number of parameters by increasing the width p without
changing the input dimension d.

We now introduce a model that seeks to mimic the behaviour of neural networks. Labels are
generated from an isotropic latent Gaussian variable:

yi = 〈β?, zi〉+ ξi, zi ∼ N (0, Id), ξi ∼ N (0, τ2) (3.44)

However, the statistician does not observe the latent covariates, but rather a noisy projection:

xi = Wzi + ui (3.45)

where W ∈ Rp×d is a fixed matrix and ui ∼ N (0, Ip) i.i.d. In other words, the statistician performs
regression on the training data D = {(xi, yi) ∈ Rp+1 : i = 1, . . . , n}. This model, known under the
umbrella of hidden manifold model (Goldt et al., 2020) or latent space model (Hastie et al., 2022),
models the well-known manifold hypothesis that high-dimensional data depends on a few “relevant
features” lying on a lower-dimensional manifold.

This model is a particular case of the one introduced in assumption 1. To see this, note that
(yi,xi, zi) are jointly Gaussian variables:yixi

zi

 ∼ N
 0

0p
0d

 ,
τ2 + ||β||22 (Wβ?)

> β>?
Wβ? WW> + Ip W>

β? W Id

 , i.i.d. (3.46)

Therefore, by Gaussian conditioning we have:

yi|xi ∼ N
(

(W>W + Ip)
−1Wβ?,xi, τ

2 + 〈β?, (W>W + Id)
−1β?〉

)
(3.47)

In other words, this model is statistically equivalent to:

yi = 〈θ?,xi〉+ εi (3.48)

with:

θ? = (WW> + Ip)
−1Wβ? (3.49)

and εi ∼ N (0, σ2) is an effective Gaussian noise with variance σ2 = τ2 + 〈β?, (W>W + Id)
−1β?〉.

Remark 5. From the perspective of the latent model, the effective noise accounts for both for the label
noise τ2 but also for the model misspecification (i.e. the fact that we are fitting in a p dimensional space
instead of the d dimensional space the signal lives). In particular, when p = 0 we have σ2 = τ2+||β?||22.
Note that beyond the anisotropy, a key difference of the model above is that the target weights in
eq. (3.49) are correlated with the top right eigenvectors of W .

For concreteness, let’s look at a simple particular case:

• We assume that n, p, d→∞ at constant rates γ = p/n and α = n/d.

• We assume β? ∈ Sd−1, i.e. ||β?||2 = 1.

• We assume that W ∈ Rp×d is given by:

W =


[ √

p/dId

0(p−d)×d

]
if p ≥ d[√

p/dIp 0p×(d−p)

]
if p < d

(3.50)

Note this implies:

W>W =


p/dId if p ≥ d[
p/dIp 0

0 0

]
if p < d

, WW> =


[
p/dId 0

0 0

]
if p ≥ d

p/dIp if p < d

(3.51)
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Figure 3: Risk of ridge regression as a function of γ = p/n for the latent space model defined in
Section 3.4 for τ2 = 0, α = n/d = 10. Solid curves show the theoretical result, obtained from solving
the self-consistent eq. (3.54), and crosses are finite size simulations with d = 100.

Remark 6. For the third assumption, any full-rank matrix with fixed Frobenius norm ||W ||2F = p
would be equally good. Equation (3.50) is the simplest such example.

Under these assumptions, we have the following simplification:

θ? = (WW> + Ip)
−1Wβ? = W (W>W + Id)

−1β? =
Wβ?

1 + αγ

σ2 =

{
τ2 + 1

1+αγ if p ≥ d
τ2 + 1− αγ/2 if p < d

(3.52)

Further, we can also simplify the expression of the degrees-of-freedom:

dfa(κ) = Tr
{
Σa(Σ + κIp)

−a} =

d
(

αγ+1
αγ+1+κ

)a
+ p−d

(1+κ)a if p ≥ d

p
(

αγ+1
αγ+1+κ

)a
if p < d

, a = 1, 2 (3.53)

Therefore, in the proportional high-dimensional limit, the self-consistent equation eq. (3.15) reads:

1− λ

κ
= min(γ, 1/α)

αγ + 1

αγ + κ+ 1
+

(
γ − 1

α

)
+

1

1 + κ
(3.54)

As before, this is a quadratic equation that can be solved explicitly. However, differently from the
isotropic case the expressions are cumbersome, so we refrain from writing them here, and focus instead
on the discussion of the interpolator λ = 0+.

For γ < 1 (p < n), κ(0) = 0 is a solution of eq. (3.54), and we have B = 0. Then, the risk is
completely dominated by the variance:

R = σ2 + V = σ2
(

1 +
γ

1− γ

)
=

{(
τ2 + 1

1+αγ

)
1

1−γ if p ≥ d(
τ2 + 1− αγ

2

)
1

1−γ if p < d
(3.55)

Note that as γ → 1+, the variance (and hence the risk) diverge as (1 − γ)−1, just as in the isotropic
case studied in section 3.3. Assuming that α > 1, for γ > 1 the expressions for the bias and the
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variance read:

B(γ, α, τ2) = κ?(0)2
A

1−B

V(γ, α, τ2) =

(
τ2 +

1

αγ + 1

)
B

1−B
. (3.56)

where we have defined:

A(γ, α, τ2) = 〈θ?,Σ (Σ + κ(λ)Id)
−2 θ?〉 =

αγ

(αγ + 1)(αγ + κ?(0) + 1)2
(3.57)

B(γ, α, τ2) =
1

n
df2 =

1

α

(
αγ + 1

αγ + 1 + κ?(0)

)2

+

(
γ − 1

α

)
1

(1 + κ?(0))2
(3.58)

and κ?(0) > 0 is given by:

κ?(0) = γ − 1− αγ

2
+

1

2

√
(4 + α2)γ2 − 4γ (3.59)

Figure 3 shows the risk of ridge regression for the latent variable model for different values of the
regularisation λ. For λ ≈ 0+ (interpolator), we can clearly see the divergence at γ → 1 discussed
above, also known as double descent or interpolation peak. Differently from the isotropic case in
section 3.3, for γ > 1, the risk is a decreasing function of γ, meaning that overparametrisation does
not hurt generalisation. Moreover, the minimal risk is achieved at large parametrisation γ →∞, when
the predictor perfectly interpolates the training data. This phenomenon is known as benign overfitting,
and is at odds with the classical statistical intuition that interpolating the training data always hurts
generalisation.

Remark 7 (Historical note). Both the interpolation peak (Opper et al., 1990; Krogh and Hertz,
1991) and observation that neural networks continue to improve their performance as the number of
neurons is increased are quite old (Geman et al., 1992), see (Loog et al., 2020) for a detailed historical
discussion. These results were mostly forgotten, and were independently rediscovered in the recent
development of machine learning theory driven by the deep learning boom (Zhang et al., 2021). The
term “double descent” was coined by Belkin et al. (2019), motivated by different empirical works that
observed an interpolation peak in the context of neural networks (Nakkiran et al., 2021; Spigler et al.,
2019).

4 To go further

4.1 Random Features Model

The double descent curve discussed in Section 3.4 is not a particular feature of the latent variables
model, and manifests in different problems of interest in machine learning. One important example is
the random features model, where the predictor is given by:

fθ(x) = 〈a, σ(Wx)〉 (4.1)

where W ∈ Rp×d is a full-rank matrix, typically taken to be random, and the weights θ ∈ Rp are
trained by ridge regression:

âλ(X,y) = argmin
a∈Rp

1

2n

n∑
i=1

(yi − 〈a, σ(Wx)〉)2 +
λ

2
||a||22

=
1

n

(
1

n
Φ>Φ + λIp

)−1
Φ>y (4.2)
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where we have defined the features matrix Φ = σ(XW>) ∈ Rp×d. Note that this model is equivalent
to a two-layer neural network of width p with frozen first layer weights. Indeed, it has been widely
studied in the literature as a proxy model for neural networks in the lazy regime.2

The challenge of studying this model is that the features matrix Φ is not a Gaussian matrix, as
it was the case for the latent variable model discussed in section 3.4. Nevertheless, quite remarkably
Theorem 1 can still be applied to characterise the asymptotic properties of the random features model
in the proportional regime, thanks to a phenomenon known as Gaussian universality, and which was
first discussed in this context by Mei and Montanari (2022); Gerace et al. (2020). We now give a brief
intuitive discussion, referring the reader interested in the details to the original literature.

The ridge operator in eq. (4.2):

y ∈ Rn 7→ 1

n

(
1

n
Φ>Φ + λIp

)−1
Φ>y (4.3)

projects the response onto the column-space of Image(Φ>) ⊂ Rp, which is a linear subspace of the fea-
ture space. To see this mathematically, denote by Φ =

∑r
j=1 λjujv

>
j the singular-value decomposition

of the features Φ with r := rank(Φ) ≤ min(n, p). Then, we can re-write eq. (4.2) as:

âλ(Φ,y) =
r∑
j=1

λj
λ2j + nλ

〈uj ,y〉vj (4.4)

Therefore, assuming that yi = f?(x) + εi for some target function f? : Rd → R, the predictor
f(x; âλ) = 〈âλ,ϕ(x)〉 can learn at best a linear component of the target function f? in the space
spanned by the features ϕ(x). For instance, in the vanilla ridge case ϕ(x) = x this would imply that
only a linear component of the target can be learned: f?(x) = 〈β?,x〉 + f>1

? (x), with the non-linear
component f>1

? effectively behaving as part of the label noise εi when projected on âλ. A non-linear
feature map ϕ(x) therefore allows, in principle, to learn higher order, non-linear components.

To make this discussion more concrete, it is useful to decompose the target function in an or-
thonormal basis with respect to the distribution of the covariates. Since we assume xi ∼ N (0, 1/dId),
this is given by the Hermite polynomials:

f?(x) =
∑
α∈Nd

cαhα(x) (4.5)

where hα(x) are the Hermite tensors, which form an orthonormal basis of L2(Rd, γd) — where we
denote γd the Gaussian p.d.f. in dimension d. This basis induces an orthogonal decomposition of
L2(Rd, γd) =

⊕
`≥1 Vκ, where Vκ is the linear space spanned by polynomials of degree ` = |α|. The

coefficients cα quantify how much of the total energy of the target ||f?||2γd =
∑
α c

2
α lies in each

subspace.
Assuming the features Φ are full-rank r = min(n, p)3, since the ridge predictor in eq. (4.4) spans

a linear subspace of dimension r, a naive power counting suggests that to learn the component of the
target in subspace V` requires r = O(d`), with the minimum between the number of samples n and
the width p being the bottleneck for approximating V`. Therefore, in a polynomial scaling regime
n, p = Θ(d`), we can learn at best a degree ` polynomial approximation of the target function f?. In
particular, under the proportional asymptotics discussed in Section 3, it is enough to consider a linear
target function f?(x) = 〈β?,x〉.
4! It is important to keep in mind the discussion in this section is specific to ridge regression.

2Although, as we have seen in Lecture 4, random features are only one component of the kernel in the lazy regime,
the other being the NTK.

3For instance, for xi ∼ N (0, 1/dId) and wj ∼ N (0, Id), Φ = σ(XW>) will be a full-rank matrix with high-probability
with respect to X,W .
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An important consequence of this discussion is that in the high-dimensional limit a random features
map sees the target function at a limited resolution. Considering the expansion of the feature map in
the Hermite basis:

ϕj(x) = σ (〈wj ,x〉) =
∑
`≥0

b`h`(〈wj ,x〉) (4.6)

Its first and second moments are given by:

Ex[σ (〈wj ,x〉)] = b0 (4.7)

Ex[σ (〈wj ,x〉)σ (〈w0,k,x〉)] =
∑
`≥0

b2`

(
〈wj ,w0,k〉

d

)`
(4.8)

In particular, note that if wj ∼ N (0, Id), with high-probability 1/d〈wj ,wk〉 = O(d−1/2) for j 6= k
and 1/d||wj ||2 = 1, meaning that to leading order in d, the features population covariance Σ =
Ex[ϕ(x)ϕ(x)>] is given by:4

Σ = b201p1
>
p + b21

W0W
>
0

d
+ b2?Ip + oP,d(1) (4.9)

where we have defined:

b2? =
∑
`≥2

b2` = Ez∼N (0,1)

[
σ(z)2

]
− b20 − b21 (4.10)

This implies that under the proportional high-dimensional limit, the features ϕ(x) = σ(W0x) have
the same first and second moments as the following Gaussian covariates:

g = b01p + b1W0x+ b?u, u ∼ N (0, Ip) (4.11)

This is exactly the latent variable model we studied in section 3.4! This suggests that in the pro-
portional high-dimensional limit, we can trade the study of the original non-linear random features
model in eq. (4.2) for the study of an equivalent Gaussian covariate model. This is an instance of a
more general universality phenomenon, known as a Gaussian equivalence. We refer the reader for the
original works for a full discussion of Gaussian universality in this context (Mei and Montanari, 2022;
Gerace et al., 2020; Goldt et al., 2022; Hu and Lu, 2022; Montanari and Saeed, 2022)

4.2 Benign overfitting

Whether a predictor can benignantly overfit the data will crucially depends on the geometry of the
covariates. Intuitively, benign overfitting means that the predictor is able to fit the signal in the data
(so it can generalise) while also fitting the noise (so it can interpolate). This is only possible when the
signal is strong, and lies in a sufficiently small subspace of the covariate space, ensuring that there is
enough “room” left to accommodate the noise.

Note that this is precisely the case in the latent variable model discussed above: the signal β? is in
Rd while the predictor and the covariates are in x,θ ∈ Rp. For p ≥ d, the covariate covariance Σ has
a block structure, with the directions corresponding to the d dimensional signal space being O(p/d),
while the remaining p− d directions being O(1). Hence, when the system is overparametrised p� d,
the covariance has a small but strong signal block, with a weak but large orthogonal block.

General conditions for benign overfitting in the context of ridge regression were first studied by
Bartlett et al. (2020); Tsigler and Bartlett (2023). Here, we will closely follow an argument from
Misiakiewicz and Montanari (2024) which is based on the formulas from proposition 1.

4Note this is normalised such that Tr Σ = Θ(p)
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Figure 4: Test error of the random features ridge regressor eq. (4.2) as function of γ = p/n at fixed
n/d = 1.5 and λ = 0+. The solid line denote the theoretical result obtained from proposition 1 under
the Gaussian equivalent covariance eq. (4.9), and points denote finite-size simulations with d = 500.

4! Technically, the discussion that follows requires a non-asymptotic control of the risk, which
goes beyond our proportional asymptotic result proposition 1. Nevertheless, as previously discussed,
one can derive non-asymptotic multiplicative rates for the deterministic equivalents in theorem 1. We
refer the interested reader to (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024; Defilippis
et al., 2024).

From eq. (3.20) and the self-consistent equation for κ?, we know that for any λ ≥ 0:

Tr Σ2(Σ + κ?Id)
−2 ≤ Tr Σ(Σ + κ?Ip)

−1 = n

(
1− λ

κ?(λ)

)
≤ n (4.12)

We now assume that actually we have a tighter control of df2(κ?):

Tr Σ2(Σ + κ?Id)
−2 ≤ n

(
1− 1

c?

)
(4.13)

for a constant c? ∈ (1,∞) which is problem dependent. This implies an immediate upper-bound on
the bias and variance:

B(θ?,Σ, λ, γ) =
κ(λ)2〈θ?,Σ (Σ + κ?Id)

−2 θ?〉
1− 1

n Tr {Σ2(Σ + κ?Id)−2}
≤ c?κ2?〈θ?,Σ (Σ + κ?Id)

−2 θ?〉

V(Σ, λ, σ2, γ) = σ2
Tr
{

Σ2 (Σ + κ?Id)
−2
}

n− Tr {Σ2(Σ + κ?Id)−2}
≤ c?σ

2

n
Tr Σ2(Σ + κ?Id)

−2 (4.14)

reducing the problem to the study of f.2(κ?) and the quadratic form in the bias. The key idea to control
these terms is to split the target and the covariance into a low- and a high-frequency part:

Σ =

k?∑
`=1

λ`v`v
>
` +

d∑
`=k?+1

λ`v`v
>
` := Σ≤k? + Σ>k? (4.15)

θ? =

k?∑
`=1

〈θ?,v`〉v` +

d∑
`=k?+1

〈θ?,v`〉v` := θ?,≤k? + θ?,>k? (4.16)

where, motivated by the discussion in section 3.1 we take the cut-off to be:

k? = max{k : λk ≥ κ?} (4.17)
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Using this decomposition allow us to further upper-bound the bias and variance. Starting with the
variance, we have:

Tr Σ2(Σ + κ?Id)
−2 =

k?∑
`=1

λ2`
(λ` + κ?)2

+
d∑

`=k?+1

λ2`
(λ` + κ?)2

≤
k?∑
`=1

λ2`
λ2`

+
d∑

`=k?+1

λ2`
κ2?

(4.18)

≤ k? +
d∑

`=k?+1

λ2`
λ2k?+1

(4.19)

where in the last inequality we have used that by construction λk+1 < κ? to upper-bound the second
term. While this is a perfectly good bound, to bring it closer to the result derived by Bartlett et al.
(2020), we can use the self-consistent equations to further rewrite the second term. Indeed, we can
bound:

n ≥ Tr Σ(Σ + κ?Id)
−1 =

k?∑
`=1

λ`
λ` + κ?

+

d∑
`=k?+1

λ`
λ` + κ?

≥
k?∑
`=1

λ`
2λ`

+

d∑
`=k?+1

λ`
2κ?

=
k?
2

+
d∑

`=k?+1

λ`
2λk?+1

(4.20)

In particular, since k? ≥ 1 we have n ≥
∑

`>k?
λ`/2λk?+1 and so the variance term can be bounded by:

V ≤ c?σ
2

n

k? +
d∑

`=k?+1

λ2`
λ2k?+1


≤ c?σ2

[
k?
n

+
σk2?
σ2k?+1

(∑
`>k?

λ`
)2∑

`>k?
λ2`

n

]
(4.21)

The ratio:

r(k) =

(∑
`>k λ`

)2∑
`>k λ

2
`

(4.22)

is a classical quantity is Physics and Random Matrix Theory, where r(1) is spectrum participation
ratio. It measures how “localised” is the spectrum of a matrix. Indeed, if all eigenvalues are equal,
r(1) = 1, while if only a few eigenvalues dominate the spectrum, we have r(1) � 1. Here, we define
it with respect to the tail of the spectrum.

Similarly, we can bound the bias:

B ≤ c?
d∑
`=1

κ2?λ`
(λ` + κ?)2

〈θ?,v`〉2 (4.23)

≤ c?

 k?∑
`=1

κ2?
λk
〈θ?,v`〉2 +

d∑
`=k?+1

λ`〈θ?,v`〉2
 (4.24)

≤ c?
[
λ2k? ||θ?,≤k? ||

2
Σ−1 + ||θ?,>k? ||2Σ

]
(4.25)
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Summarising, we have the following upper-bounds:

V ≤ c?σ2
[
k?
n

+
σk2?
σ2k?+1

(∑
`>k?

λ`
)2∑

`>k?
λ2`

n

]
(4.26)

B ≤ c?
[
λ2k? ||θ?,≤k? ||

2
Σ−1 + ||θ?,>k? ||2Σ

]
(4.27)

k?
2

+
∑

`=k?+1

λ`
2λk?+1

≤ n (4.28)

with c? ∈ (1,∞). Note this is valid for all λ ≥ 0. We can also obtain a lower-bound for k? by assuming
λ ≤ κ?/2, which can always be satisfied by taking λ small enough, since κ?(λ) ≥ λ ≥ 0. In this case:

Tr Σ(Σ + κ?Id)
−1 = n

(
1− λ

κ?

)
≥ n (4.29)

Hence:

n ≤ Tr Σ(Σ + κ?Id)
−1 =

k?∑
`=1

λ`
λ` + κ?

+

d∑
`=k?+1

λ`
λ` + κ?

≤
k?∑
`=1

2λ`
λ`

+

d∑
`=k?+1

2λ`
κ?

= 2k? + 2
∑

`=k?+1

λ`
λk?+1

(4.30)

This lower-bound implies that k? → ∞ as n → ∞. Together, this provides everything we need to
characterise when overfitting is benign.

Assuming that λk → 0 as k →∞, we have that:

B → 0 as n→∞ (4.31)

provided that ||θ?||Σ−1 < ∞. A sufficient condition is that θ? only with finitely many directions of
the covariance Σ. What about the variance? Assuming that λk?/λk?+1 < ∞ as k? → ∞, in order for
the variance to vanish we need that:

k?
n
→ 0,

n

r(k?)
→ 0. (4.32)
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