
Mathematics of Deep Learning

Lecture 4: Neural networks close to initialisation

Bruno Loureiro

Département d’Informatique, École Normale Supérieure - PSL & CNRS, France

07/02/2025

Typos, comments or suggestions? Get in touch at: bruno.loureiro@di.ens.fr

1 Motivation

In the previous lectures, we have mostly focused our attention of the approximation question: given
a hypothesis class, how well the the best predictor in the class can approximate the Bayes risk?
The key take away from this discussion is that neural networks are pretty good in approximation.
Even the simplest two-layer neural network is able to uniformly approximate an arbitrary continuous
function on a compact set provided the width is large enough. In the worst case, “large enough”
means exponentially in the input dimension. Nevertheless, we saw that this worst case result can be
considerable improved if the target function is more regular, with the width scaling proportionally to
a regularity measure (a.k.a. the Barron norm).

While this result is satisfying in many ways, it is only one piece of the puzzle. Sure, the best choice
of first and second layer weights does the approximation job, but in the worst case finding these weights
with an actual algorithm is a known NP-hard problem (Blum and Rivest, 1988). Nevertheless, training
large neural networks with SGD on limited data seem to yield good generalisation performance. How
come?

As we saw in Lecture 1, the approximation error is only one component of the generalisation gap:

R(θ̂)−R? =

{
R(θ̂)− inf

θ∈Θ
R(θ)

}
︸ ︷︷ ︸

estimation

+

{
inf
θ∈Θ

R(θ)−R?
}

︸ ︷︷ ︸
approximation

. (1.1)

with the remaining part, the estimation error, accounting for how far our predictor is from the best
predictor in the class. Understanding the estimation error involves both statistical and algorithmic
aspects, and only recently we started developing a good understanding of this term for the case of
two-layer neural trained with descent-based algorithms such as GD and SGD. In next few lectures, we
will review some of this progress, starting from the influential result that in some regime, wide neural
networks are equivalent to kernel methods.

2 The neural tangent kernel

Understanding the training dynamics of two-layer networks requires understanding how the weights
move under a certain algorithm. Therefore, the starting point is initialisation.

1

mailto:brloureiro@gmail.com

a ∈ Rp W ∈ Rp×d b ∈ Rp
Kaiming

(Pytorch)
aj ∼

i.i.d.
Unif

([
−
√

6
p ,
√

6
p

])
wjk ∼

i.i.d.
Unif

([
−
√

6
d ,
√

6
d

])
0

Xavier
(Tensorflow)

aj ∼
i.i.d.

Unif
([
−
√

6
p+1 ,

√
6
p+1

])
wjk ∼

i.i.d.
Unif

([
−
√

6
p+d ,

√
6
p+d

])
0

Table 1: Default initialisation for Pytorch and Tensorflow, also known the the Kaiming-Hu and
the Xavier-Glorot initialisations, respectively.

2.1 Wide networks at initialisation

Consider a two-layer neural network with activation σ and width p:

f(x;θ) =

p∑
j=1

ajσ(〈wj ,x〉+ bj) (2.1)

In a standard Python frameworks such as pytorch or tensorflow, the weights are typically ini-
tialised at random from a uniform distribution at a interval depending on the width and the dimension,
see table 1. It is curious to note that irrespective of your choice, the interval of the second layer weights
shrinks as the width grows, in particular, the standard deviation vanishes as:

std(a0
j) = O(1/√p) as p→∞ (2.2)

The discussion above motivates the following rewriting at initialisation:

f(x;θ0) =
1
√
p

p∑
j=1

ã0
jσ(〈w0

j ,x〉) (2.3)

where ãj = O(1). For reasons that we will see next, the 1/√p scaling is also known as the NTK scaling,
and can be understood as the right scaling in order to make the f(x;θ0) = O(1) at initialisation.
Indeed, f(x;θ0) is given by a sum of p independent random variables with O(1) variance.

This is precisely the scaling of the central limit theorem! Indeed, assuming x ∈ Rd is fixed, the
above is a sum of independent random variables with standard deviation 1/√p - meaning that in the
limit p → ∞ the network at initialisation will converge to a Gaussian function with mean zero and
variance given by:

KGP(x,x′) := E[f(x;θ0)f(x′;θ0)] = Ea,w
[
a2σ(〈w,x〉)σ(〈w,x′〉)

]
(2.4)

This is known as a Gaussian process, and was first derived in (Neal, 1996). In other words:

f(·;θ0)
d−→ GP (0,KGP(·, ·)) (2.5)

4! Note that the 1/√p CLT scaling in eq. (2.3) is different from the 1/p scaling assumed in the
discussion of Barron spaces in last lecture. As we will see later, this has important consequences for
the space of functions that can be expressed by networks in this scaling.

2.2 Wide networks close to initialisation

At initialisation, a wide neural network with standard scaling is a Gaussian random function. What
happens as we move away from initialisation? Before looking at particular training algorithms, let’s
look at how our network looks close to initialisation. More concretely, let θ ∈ B(θ0, 1). By Taylor’s
theorem:

f(x;θ) ≈ f(x;θ0) + 〈∇θf(x;θ0),θ − θ0〉 (2.6)

2

Therefore, to first order the network f(x;θ) can be seen as linear method with features ϕ(x;θ) =
∇θf(x;θ) — also known as the neural tangent features. But how close is the predictor to being linear?
This is quantified by the next order or remainder term:

f(x;θ) ≈ f(x;θ0) + 〈∇θf(x;θ0),θ − θ0〉+
1

2
〈θ − θ0,H(θ − θ0) (2.7)

where H = ∇2
θf(x;θ0) is the Hessian matrix. Therefore, defining the linearised network:

flin.(x;θ) = f(x;θ0) + 〈∇θf(x;θ0),θ − θ0〉 (2.8)

we can see that the deviation of f from flin. in uniform norm is quantified by the operator norm of
the Hessian:

sup
θ∈B(θ0,1)

|f(x;θ)− flin.(x;θ)| = 1

2
sup

θ∈B(θ0,1)

〈θ − θ0,H(θ − θ0)〉 (2.9)

= sup
||v||2=1

〈v,Hv〉 :=
1

2
||H||op (2.10)

Where the last equality follows from the fact that the quadratic form f(x) = 〈x,Ax〉 with A � 0
attains its maximum on B(0, 1) on the boundary. Up to now, our discussion is valid for an arbitrary
parametric function f(x;θ). Let’s now look at the case of the two-layer neural network under standard
initialisation scaling:

f(x;θ) =
1
√
p

p∑
j=1

ajσ(〈wj ,x〉+ bj) (2.11)

To simplify the exposition, we will consider both aj and bj to be fixed, and let bj = 0 to lighten the
notation. As you will show in exercise 3, the argument that follows carries over to the general case.
Assuming σ is twice differentiable, the gradient and Hessian of the network with respect to wj reads:

∇wjf(x;θ) =
1
√
p
ajσ
′(〈wj ,x〉)x (2.12)

Hjk(θ) = ∇wj∇wk
f(x;θ) =

1
√
p
ajσ
′′(〈wj ,x〉)δijxx> (2.13)

Therefore, the Hessian at initialisation H ∈ Rpd×pd is a block-diagonal matrix:

H =


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hp

 (2.14)

with Hj ∈ Rd×d for j ∈ [p] given by a rank-one matrix:

Hj =
1
√
p
a0
jσ
′′(〈w0

j ,x〉)xx> (2.15)

The operator norm of each block is easy to compute:

||Hj ||op =
1
√
p
|a0
j | · |σ′′(〈w0

j ,x〉)| · ||x||22 (2.16)

3

Hence, the operator norm of the full Hessian at initialisation is given by:

||H||op = sup
j∈[p]

||Hj ||op = sup
j∈[p]

[
1
√
p
|a0
j | · |σ′′(〈w0

j ,x〉)| · ||x||22
]

(2.17)

As discussed in Section 2.1, a0 = O(1) is typically initialised uniformly in a bounded interval, say
[−1, 1]. Moreover, σ has often bounded second derivative σ′′(z) < M , e.g. for sigmoid-like functions
or ReLU. Therefore:

||H||op ≤
M ||x||22√

p
= O(1/√p) as p→∞ (2.18)

Putting this together with eq. (2.9) gives the following remarkable result:

Proposition 1. Let f(x;θ) denote a two-layer neural network of width p and activation function σ:

f(x;θ) =
1
√
p

p∑
j=1

ajσ(〈wj ,x〉) (2.19)

Assume σ has bounded second derivative. Then, under standard initialisation on the second-layer
weights a0 ∼ Unif([−m,m]):

sup
θ∈B(0,1)

|f(x;θ)− flin.(x; θ)| = O(1/√p) as p→∞. (2.20)

This is a quite remarkable result: it tell us that wide two-layer neural networks with standard
scaling are close to linear functions!

4! Note that while the operator norm of the Hessian vanishes with p→∞, that’s not the case for
f(x;θ) (as we saw in section 2.1) and for the gradient ∇θf . Indeed, for any j ∈ [p] we have:

p∑
j=1

||∇wjf(x;θ)||22 =
1

p

p∑
j=1

a2
jσ
′(〈wj ,x〉)2||x||22 = O(1). (2.21)

Hence the linear approximation itself flin. is not a constant function — meaning the linear behaviour
is actually non-trivial.

Remark 1. Some remarks are in order.

• This result first appeared in Liu et al. (2020), who also proved a more general result for deep
networks.

• Note that in our derivation, we did not use any information about the initialisation of the first
layer weights w0

j . Indeed, this is not necessary in the two-layer case. However, it does play an
important role in the proof of the deep case.

• Note that this argument breaks down if we add a non-linearity at the last-layer g(x;θ) =
φ(f(x;θ)) — see exercise 2 for a discussion.

2.3 Wide networks away from initialisation

We now discuss what happens as we move away from initialisation. For that, we consider a supervised
learning problem with training data D = {(xi, yi) ∈ Rd×Y : i ∈ [n]}. For simplicity of exposition, we
will consider the case where the network is trained under gradient flow on the square loss:

θ̇(t) = −∇R̂(θ;D)

=
1

n

n∑
i=1

(yi − f(xi;θ(t)))∇f(xi;θ(t)) (2.22)

4

where we denote u̇ := du/dt. As the weights θ(t) change, how does the predictor change? For that, we
use the chain rule to write:

df(x;θ)

dt
= 〈∇θf(x;θ), θ̇〉 (2.23)

Inserting eq. (2.22) in the above:

df(x;θ)

dt
=

1

n

n∑
i=1

(yi − f(xi;θ)) 〈∇f(x;θ),∇f(xi;θ)〉 (2.24)

Defining the empirical neural tangent kernel :

K̂t(x,x
′) = 〈∇f(x;θ(t)),∇f(x′;θ(t))〉 (2.25)

We can rewrite:

df(x;θ)

dt
=

1

n

n∑
i=1

K̂t(xi,x) (yi − f(xi;θ)) (2.26)

In particular, if we are interested to track the prediction function over the training data, we can define
a vector: f ∈ Rn with elements fi := f(xi;θ) and write the above in a matrix form:

ḟ(t) =
1

n
K̂t(y − f(t)) (2.27)

where we defined the kernel matrix K̂t ∈ Rn×n with elements K̂t,ij = K̂t(xi,xj).

Remark 2. A few comments are in order.

• The above derivation is valid for any parametric function f(x;θ). In particular, it is valid for
networks with depth L > 2.

• Let p = |Θ| denote the total number of parameters. Then, if K̂t has rank n (which is possible
if p > n, for instance), stationary points of the flow consist of interpolators f = y.

• Moreover, if at some time t > T the empirical NTK becomes constant K̂t ≈ K̂, eq. (2.27) simply
describes an exponential relaxation to the interpolator f = y, with the relaxation rate given by
the largest eigenvalue of K.

Now let’s go back to our favourite model: the two-layer neural network. Motivated by the discussion
in section 2.1, we will consider the NTK initialisation:

f(x;θ) =
1
√
p

p∑
j=1

ajσ(〈wj ,x〉) (2.28)

with Kaiming-like initialisation aj(0) ' Unif([−1, 1]), wj(0) ∼ N (0, 1/dId) and for simplicity consider
bj = 0. Then, since θ = (W ,a), the neural tangent kernel in eq. (2.25) explicitly reads:

K̂t(x,x
′) =

1

p

p∑
j=1

σ(〈wj(t),x〉)σ(〈wj(t),x
′〉) +

〈x,x′〉
p

p∑
j=1

a2
jσ
′(〈wj(t),x〉)σ′(〈wj(t),x

′〉) (2.29)

Just as in the argument we made in section 2.1, at initialisation t = 0 the empirical NTK kernel K̂0

can be seen as a discretisation of a limiting infinite width kernel. Indeed, by the law of large numbers
we have

K̂0(x,x′)
a.s.−−→ K0(x,x′) := KRF(x,x′) +KNTK(x,x′), as p→∞ (2.30)

5

where:

KRF(x,x′) := Ew
[
σ(〈w,x〉)σ(〈w,x′〉)

]
KNTK(x,x′) := 〈x,x′〉Ea,w

[
a2σ′(〈w,x〉)σ′(〈w,x′〉)

]
(2.31)

The kernel KRF is known as the random features kernel. Some authors refer to the full K0 as the
neural tangent kernel (NTK), while others only the part proportional to the derivative of the activation
KNTK.

This argument only applies to initialisation t = 0 at this point, and the choice of initial scaling
1/√p is crucial. In particular, note that K0 is quite different from the Gaussian process kernel defined
by the wide limit of initialisation in eq. (2.4). We are now interested in understanding how much does
f(x,θ(t)) deviates from flin.(x,θ(t)) along the flow eq. (2.26). For that, define:

E(t) = sup
x
|f(x,θ(t))− flin.(x,θ(t))| (2.32)

and note that at t = 0, we have E(0) = 0 if θ(0) = θ0. Then, we have:

dE(t)

dt
≤ sup

x

∣∣∣∣ d

dt
[f(x,θ(t))− flin.(x,θ(t))]

∣∣∣∣ (2.33)

Therefore, we need to control:

d

dt
[f(x,θ(t))− flin.(x,θ(t))] =

〈
∇f(x,θ(t))−∇flin.(x,θ(t)), θ̇(t)

〉
=
〈
∇f(x,θ(t))−∇f(x,θ0), θ̇(t)

〉
(2.34)

since ∇flin.(x,θ(t)) = ∇f(x,θ0). Hence, by Cauchy-Schwarz:∣∣∣∣ d

dt
[f(x,θ(t))− flin.(x,θ(t))]

∣∣∣∣ ≤ ||∇f(x,θ(t))−∇f(x,θ0)||2 · ||θ̇(t)||2 (2.35)

By the mean value theorem, for any u ∈ [0, 1]:

||∇f(x,θ(t))−∇f(x,θ0)|| ≤ ||∇2f(x, uθ0 + (1− u)θ(t))||op · ||θ(t)− θ0||2 (2.36)

Therefore, the main ingredient to control E(t) is to ensure that the velocity is bounded ||θ(t)||2 ≤ V .
Indeed, assuming this is the case implies, by continuity, that θ(t) cannot move away from θ0 by a
fixed distance for a given time horizon:

||θ(t)− θ0||2 =

∣∣∣∣∣∣∣∣∫ t

0
θ̇(s)ds

∣∣∣∣∣∣∣∣
2

≤
∫ t

0
||θ̇(s)||ds = V t (2.37)

In other words, for any time horizon t ∈ [0,R/V), we have ||θ(t)−θ0||2 ≤ R. Together with our bound
on the Hessian eq. (2.18) this implies that in this time horizon:∣∣∣∣ d

dt
[f(x,θ(t))− flin.(x,θ(t))]

∣∣∣∣ ≤ VM ||x||2√
p
||θ(t)− θ0||2 (2.38)

Or in other words:

dE(t)

dt
≤ V c
√
p
||θ(t)− θ0||2 ≤

RV c
√
p

(2.39)

6

for some other constant c > 0. By Gronwall’s inequality:

E(t) ≤ E(0)︸ ︷︷ ︸
=0

+
RV c
√
p
t (2.40)

Therefore, as long as t ∈ [0,R/V], we have E(t) = O(1/√p) and f(x,θ(t)) ≈ flin.(x,θ(t))). It remains
just to justify why the velocity is bounded along the flow. This is rather intuitive. Indeed, recall that
under the flow:

ḟ(t) =
1

n
K̂t(y − f(t)) (2.41)

where Kt ∈ Rn×n is the matrix with entries K̂t,ij = 〈∇f(xi;θ(t)),∇f(xj ;θ(t))〉. Since in the interval
t ∈ [0,R/V] we have f ≈ flin., then K̂t ≈ K̂0 since the NTK for the linear model is constant. This
means that eq. (2.27) is simply an exponential relaxation. In particular, the speed is controlled by the
minimum eigenvalue of the NTK gram matrix:

||y − f(t)||2 ≤ e−λmin(K̂0)t||y − f(0)||2 (2.42)

Therefore, as long as the minimum eigenvalue of K̂0 is non-zero (i.e. K̂0 � 0) — which can be proven
for specific activations and distributions of initial conditions θ0, see Exercise 1 — then gradient flow
relaxes exponentially fast, meaning that the velocity θ̇ remains bounded and that t never exceeds R/V ,
which closes the argument. This can be formalised in the following theorem, which appeared in Du
et al. (2019):

Theorem 1 (Du et al. (2019)). Assume λ0 = λmin(K0) > 0. Then, for p ≥ O(n6/λ0δ3), with probability
at least 1− δ we have:

||y − f(t)||2 ≤ e−λ0t||y − f(0)||2 (2.43)

along the gradient flow in eq. (2.41).

Remark 3 (Generalisations). In this section, we discussed the NTK in the specific case of wide two-
layer neural networks trained under gradient flow. However, the results discussed hold on a much
more general scope. First, it can be generalise to deeper networks (Jacot et al., 2018; Lee et al., 2019)
and other architectures, such as convolutional networks and transformers (Arora et al., 2019; Yang,
2020). Similarly, it can be generalised to other algorithms, such as gradient descent and stochastic
gradient descent.

Epilogue

Together, the results in this section tell us that in the standard initialisation from Table 1 (a.k.a. NTK
scaling), infinite width networks are equivalent to a particular class of kernel methods, where the so-
called neural tangent kernels are functions of the architecture at initialisation. This result is striking,
and suggests that to understand deep networks, it suffices to understand their NTK at initialisation.
But don’t be fooled: there is actually a reason why neural networks are used in practice, instead of
kernels, and you should regard this result with a pinch of suspicion.

As we discussed in Lecture 1, one of the reasons behind the practical success of neural networks is
their capacity to adapt to the data during training, learning relevant features which can help solving
particular tasks. On the other hand, despite being powerful, kernels are not adaptive, and generally
require a large amount of data to learn functions that lack regularity. This strongly suggests that the
NTK cannot be the end of the story.

7

https://en.wikipedia.org/wiki/Gr%C3%B6nwall%27s_inequality

3 Lazy regime in optimisation

The key step in the argument of Section 2.3 is to show that the loss is minimised in timescales which
are much shorter than the time it takes for the parameters to move away from a neighbourhood of
initialisation. This behaviour, known as the lazy regime of wide neural networks, is more general than
the particular context of two-layer neural networks. Indeed, a close inspection reveals that the crucial
ingredient in the argument is the scaling of parameters at initialisation. This was noted by Chizat
et al. (2019), and we closely follow their argument here.

To formalise this, let’s consider a generic parametric model h : Rm → H and cost function L :
H → R+, where H is a Hilbert space. In the following, we will assume both h and F are smooth. We
are interested in the following optimation objective F : Rm → R+:

F (θ) := L(h(θ)). (3.1)

Let θ0 ∈ Rm denote an initial parameter, which we assume is not a critical point of the objective, i.e.
∇F (θ) 6= 0. Then, under a single step of gradient descent with learning rate η > 0, we have:

θ1 = θ0 − η∇F (θ). (3.2)

Define the relative change of the objective function with respect to the gradient step:

∆(F) :=
|F (θ1)− F (θ0)|

F (θ0)
. (3.3)

For small enough step-size η, this is effectively controlled by the gradient relative to the initial value
of the loss:

∆(F) = η
||∇F (θ0)||2
F (θ0)

+ o(η) (3.4)

On the other hand, as we have discussed in eq. (2.9), the rate of change of the features is controlled
by the Hessian at initialisation:

∆(∇h) :=
||∇h(θ1)−∇h(θ0)||2

||∇h(θ0)||2
≤ η ||∇F (θ)||2 · ||∇2h(θ)||op

||∇h(θ0)||2
(3.5)

We say that our model is lazy whenever ∆(F)� ∆(∇h), in other words:

||∇F (θ0)||2
F (θ0)

� ||∇
2h(θ0)||op

||∇h(θ0)||2
(3.6)

For the square loss function where R(h(θ)) = 1/2||y − h(θ)||2H, this is equivalent to:

κh(θ0) := ||y − h(θ0)||H
||∇2h(θ0)||op

||∇h(θ0)||22
� 1 (3.7)

where κh is the inverse relative scale of the model h at initialisation. Whenever this is small, the
relative change in the loss is faster than the change in the features, meaning that the timescale for the
loss to be minimised will be faster than the timescale for the model to exit a linear behaviour, leading
to a lazy regime. For an extensive discussion of the lazy regime in different optimisation problems,
see Chizat et al. (2019).

Before concluding, it is instructive to go look back at out discussion in Section 2 through the lens
of lazy training. Consider our usual two-layer neural network, now introducing a generic scaling factor
α(p):

h(θ) = f(x;θ) = α(p)

p∑
j=1

ajσ(〈wj ,x〉) (3.8)

8

For any initialisation where the weights a0
j ,w

0
j are drawn independently and O(1) we can repeat the

discussion in Section 2 to show that asymptotically in p→∞:

|y − h(θ0)| = O(1)

||∇2h(θ0)||op ∼ α(p)

||∇h(θ0)||22 ∼ pα(p)2 (3.9)

and hence:

κh(θ0) ∼ 1
√
p

+
1

pα(p)
(3.10)

For any α(p) decreasing slower than 1/√p, we indeed have κh(p) → 0 as p → ∞, leading to a lazy
behaviour. The critical scaling to exit the lazy regime is given by α(p) = O(1/p), known in the
machine learning literature as mean-field scaling.1 Note this is precisely the scaling of the two-layer
neural network in Barron’s theorem from Lecture 3, and for which a large width two-layer neural
network can be represented as an integral over a probability measure µ over Rp+1:

f(x,θ) =
1

p

p∑
j=1

ajσ(〈wj ,x〉) ≈
∫
µ(da,dw)aσ(〈w,x〉), as p→∞. (3.11)

In fact, this is the scaling that maximises the relative change of the features with respect to the loss
— or in other words, maximises feature learning. In this feature rich regime, the dynamics of the
network is far from being a simple exponential relaxation to the bottom of a minimum. Indeed, in
this regime the gradient flow for infinite width neural networks can be written in terms of a flow for
the measure µt:

∂tµt = ∇θ ·
(
µt∇θR̂n(µt)

)
(3.12)

which is simply a continuity or transport equation for the density µt, see (Mei et al., 2018; Chizat
and Bach, 2018; Rotskoff and Vanden-Eijnden, 2022; Sirignano and Spiliopoulos, 2020) for a detailed
discussion. Analysing this flow is a mathematically much more challenging problem than the NTK
gradient flow eq. (2.41) with K̂t ≈ K̂0. In particular, precisely characterising the stationary measure
is a hard problem.

Remark 4. While the limiting eq. (3.12) is only well-understood for shallow networks, the equivalent
of the mean-field scaling for deep neural networks is known as the µ-parametrisation (µP), see Yang
et al. (2022) for a discussion.

4 Exercises

Exercise 1. Consider a two-layer neural network with ReLU activation σ(x) = x+:

f(x;θ) =
1
√
p

p∑
j=1

ajσ(〈w,x〉). (4.1)

Assume that the weights are initialised as a0
j ∼ Unif({−1, 1}), w0 ∼ N (0, Id).

(a) Show that the NTK kernel is given by:

KNTK(x,x′) := 〈x,x′〉Ea,w
[
a2σ′(〈w,x)σ′(〈w,x′〉)

]
= 〈x,x′〉

[
1

2
− 1

2π
arccos

(
〈x,x′〉

||x||2 · ||x′||2

)]
(4.2)

1Note that the word mean-field is used with different meanings in other contexts in Physics.

9

(b) Let xi ∈ Rd denote a batch of n independently sampled covariates, and assume xi ∈ B(0, 1).
Using Hoeffding’s inequality, show that if p ≥ Ω(ε−2n2 log n/δ), then with probability at least
1− δ over the random initialisation we have:

||K̂NTK −KNTK||F ≤ ε (4.3)

where K̂NTK,KNTK ∈ Rn×n with:

K̂NTK,ij =
〈xi,xj〉

p

p∑
k=1

a2
kσ
′(〈wk,xi)σ

′(〈wk,xj〉),

KNTK,ij = KNTK(xi,xj) (4.4)

(c) Conclude that for large enough width p, we have that λmin(K̂NTK) > 0 with high-probability.

Exercise 2. Let g(x;θ) = φ(f(x;θ)) where φ is a twice differentiable function and f(x;θ) a two-layer
neural network:

f(x;θ) =
1
√
p

p∑
j=1

ajσ(〈wj ,x〉) (4.5)

with twice-differentiable activation function σ.

(a) Considering aj to be fixed, show that for any θ, the Hessian matrix Hg of g can be related to
the Hessian matrix H(θ) of f by:

Hg(θ) = φ′(f(x;θ))H(θ) + φ′′(f(x;θ))∇wf(x;θ)∇wf(x;θ)> (4.6)

(b) Under standard initialisation a0 ∼ Unif([−1, 1]), what is the scaling in p of the operator norm
of each of the terms above?

(c) Conclude that g(x;θ) does not linearise as p→∞.

Exercise 3. Generalise the argument leading to Proposition 1 to the case where the second layer
weights aj are not fixed.

References

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Avrim Blum and Ronald Rivest. Training a 3-node neural network is np-complete. Advances in neural
information processing systems, 1, 1988.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. Advances in neural information processing systems, 31, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=S1eK3i09YQ.

10

https://openreview.net/forum?id=S1eK3i09YQ

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. Advances in neural information processing systems, 31, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient
descent. Advances in neural information processing systems, 32, 2019.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when and why
the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:15954–15964,
2020.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

Radford M Neal. Priors for infinite networks. Bayesian learning for neural networks, pages 29–53,
1996.

Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: An
interacting particle system approach. Communications on Pure and Applied Mathematics, 75(9):
1889–1935, 2022.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law of
large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

11

	Motivation
	The neural tangent kernel
	Wide networks at initialisation
	Wide networks close to initialisation
	Wide networks away from initialisation

	Lazy regime in optimisation
	Exercises

