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Notation

We denote vectors by lower-case bold letters v ∈ R and matrices by upper-case bold letters A ∈ Rn×d.
We define the short-hand [n] = {1, . . . , n}.

1 Linear algebra

1.1 Important notions

Definition 1 (Column and row space). Let A ∈ Rn×d denote a real-valued rectangular matrix with
entries aij ∈ R. Define the families of vectors ai ∈ Rd, i ∈ [n] and Aj ∈ Rn, j ∈ [d] given by the
rows and columns of A, respectively. We define the row and column spaces of A as the vector spaces
spanned by these families:

row(A) = span(a1, . . . ,an) ⊂ Rd

col(A) = span(A1, . . . ,Ad) ⊂ Rn (1.1)

Note that seen as a linear transformation A : Rd → Rn, the column space is simply its image
col(A) = Im(A).

4! For any A ∈ Rn×d, col(A) = row(A>).

Definition 2 (Rank). The rank of a real-valued rectangular matrix A ∈ Rn×d is the dimension of its
column space.

rank(A) = dim(col(A)) (1.2)

In other words, it is the number of linearly independent columns of A.

From the definition above, one might wonder why defining the rank as the dimension of the column
space and not the row space. Actually, an important result is that these two potential notions are the
same.

Theorem 1. For any real-valued rectangular matrix A ∈ Rn×d, the dimension of the column space
is the same as the dimension of the row space:

dim(col(A)) = dim(row(A)) (1.3)

Therefore, we have:

rank(A) ≤ min(n, d) (1.4)
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Definition 3 (Full-rank matrix). A real-valued rectangular matrix A ∈ Rn×d is said to be full-rank
if:

rank(A) = min(n, d) (1.5)

The most important result in linear algebra for the purpose of this course is the singular-value
decomposition.

Theorem 2 (Singular value decomposition). Any real-valued rectangular matrix A ∈ Rn×d can be
decomposed as:

A =

rank(A)∑
i=1

σiuiv
>
i (1.6)

where σi ≥ 0 are non-negative real numbers known as the singular values and ui ∈ Rn, vi ∈ Rd are
known as the left and right singular vectors. Moreover, the singular vectors form an orthonormal
family with respect to the Euclidean scalar product: u>i uj = δij , v

>
i vj = δij .

Remark 1. Without loss of generality we can (and will) assume the singular values σi(A) are non-
increasing: σ1 ≥ σ2 ≥ · · · ≥ σr where r = rank(A). Often, the SVD is written as A = UDV > where
U ∈ Rn×r and V ∈ Rd×r are the orthogonal matrices with columns ui and vi and D ∈ Rr×r is a
diagonal matrix of singular values dij = σiδij .

4! Sometimes in the literature you will find A = ŨD̃Ṽ > with Ũ ∈ O(n), Ṽ ∈ O(d) and

D̃ ∈ Rn×d obtained by completing U ,V with an orthonormal basis of Rn and Rd, respectively. In this
case, D̃ ∈ Rn×d is a rectangular matrix with a block given by D and zero elsewhere.

1.2 Important classes of matrices

There are a few classes of real valued square matrices which will often appear in the lectures. Here
we review the most important ones.

• A square matrix O ∈ Rn×n is said to be orthogonal if:

O>O = OO> = In (1.7)

Note that orthogonal matrices are always invertible O> = O−1, and as linear transformations
they define isometries, i.e. they preserve the Euclidean norm of vectors:

||Ov||2 = ||v||2 (1.8)

for any v ∈ Rn. The set of orthogonal matrices define a group, known as the orthogonal
group O(n) = {O ∈ Rn×n : O>O = In}. From eq. (1.7), it is immediate to show that
det(O) ∈ {−1,+1}. Orthogonal matrices such that det(O) = +1 are also known as rotations,
while orthogonal matrices with det(O) = −1 are known as reflections. The set of rotations
SO(n) = {O ∈ Rn×n : O>O = In and detO = 1} ⊂ O(n) defines a subgroup of O(n) known
as the special orthogonal group. Orthogonal matrices have complex eigenvalues λi ∈ C with
modulus |λi| = 1.

• A square matrix M ∈ Rn×n is said to be symmetric if:

M> = M (1.9)

Every real symmetric matrix can be diagonalised over the real numbers:

M = ODO> (1.10)
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where O ∈ O(n) is an orthogonal matrix and D ∈ Rn×n is a diagonal matrix with entries
dij = λi(M)δij . Note that the rows (or columns) of O are precisely the normalised eigenvectors
of M . A symmetric matrix M ∈ Rn×n is said to be positive semi-definite M � 0 if its
spectrum is non-negative λi(M) ≥ 0 for all i ∈ [n], and is said to be positive-definite M � 0
if its spectrum is positive λi(M) > 0 for all i ∈ [n].

4! A symmetric matrix can have zero eigenvalues, so it might not be invertible. However, a
positive-definite symmetric matrix M � 0 is always invertible.

Example 1. For any real valued rectangular matrix A ∈ Rn×d, the square matrices A>A ∈
Rd×d and AA> ∈ Rn×n are symmetric positive semi-definite matrices.

• A square matrix P ∈ Rn×n is said to be a projection if it is idempotent:

P 2 = P (1.11)

From this, it follows that a projection matrix can only have eigenvalues 0 or 1: λi(P ) ∈ {0, 1}.
Therefore, a projection matrix can always be written as:

P =

rank(P )∑
i=1

viv
>
i (1.12)

As the name suggests, projection matrices P ∈ Rn×n geometrically define projections into
a linear subspace of Im(P ) ⊂ Rn of dimension rank(P ). More explicitly, this subspace is
precisely the span of the eigenvectors corresponding to the non-zero eigenvalues V = span(vi).
An orthogonal projection P ∈ Rn×n is a projection which is also orthogonal P ∈ SO(n),
and correspond to the case where the eigenvalues vi are orthonormal vectors. Finally, every
orthogonal projection defines an orthogonal decomposition Rn = Im(P )⊕Ker(P ), for which we
can associate another orthogonal projection matrix P⊥ ∈ Rn×n, which is the projection on its
orthogonal complement Ker(P ).

4! With the exception of the identity In, a projection matrix P ∈ Rn×n is never invertible.

Example 2. Let v ∈ Rn denote a unit-norm vector ||v||2 = 1. Then:

P = vv>, P = In − vv> (1.13)

define a orthogonal projection in the line L = {αv ∈ Rn : α ∈ R} and its orthogonal complement.

1.3 Matrix norms

Just as for vectors, there are different useful notions of norm for matrices. Here we discuss the
most relevant for the lectures. Let A ∈ Rm×n denote a real-valued rectangular matrix with singular
values (σj(A))j∈[r], where r := rank(A). Without loss of generality, we assume σj(A)) ≥ 0 are
non-decreasing. We define the following matrix norms:

• The Frobenius norm of A ∈ Rn×d is defined as:

||A||F =

√√√√ n∑
i=1

d∑
j=1

A2
ij =
√

TrA>A =

√√√√ r∑
i=1

σi(A)2 (1.14)

• The operator norm of a matrix A ∈ Rn×d is defined as:

||A||op = sup
v∈Sd−1

||Av||2 = σ1(A) (1.15)

where we recall σ1(A) is the top singular value of A.
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• The nuclear norm of a matrix A ∈ Rn×d is defined as:

||A||∗ = Tr
(√
AA>

)
=

r∑
i=1

σi(A) (1.16)

Remark 2. All the norms above are a particular case of a more general class of norms known as
Schatten norms:

||A||p =

(
r∑
i=1

σi(A)p

)1/p

. (1.17)

More precisely, they correspond to the case p = 1, 2,∞.

Lemma 1. For any real valued matrix A ∈ Rm×n, we have:

||A||op ≤ ||A||F ≤ ||A||∗ (1.18)

Proof. Since the norms are positive, it is equivalent to show:

||A||2op ≤ ||A||2F ≤ ||A||2∗ (1.19)

The first inequality is immediate: since σi(A) ≥ 0, the sum can only be larger than any of the terms:

||A||2F =
r∑
i=1

σi(A)2 ≥ σi(A) for all i ∈ [r]. (1.20)

The second inequality follow from noting that:

||A||2∗ =

(
r∑
i=1

σi

)2

=

r∑
i,j=1

σiσj =

r∑
i=1

σ2i +
∑
i 6=j

σiσj

= ||A||2F +
∑
i 6=j

σiσj ≥ ||A||2F (1.21)

since σi(A) ≥ 0.

Lemma 2. All the norms above are equivalent since:

• ||A||F ≤ ||A||∗ ≤
√
r||A||F

• ||A||op ≤ ||A||∗ ≤ r||A||op

• ||A||op ≤ ||A||F ≤
√
r||A||op

1.4 Matrix identities

Let U ∈ Rn×d and V ∈ Rd×n be two rectangular matrices. We have the following useful identities:

• The traces of the resolvent and co-resolvent are related as:

Tr(UV − zIn)−1 = Tr(V U − zId)−1 −
n− d
z

(1.22)

Taking the derivative with respect to z on both sides, this also implies:

Tr(UV − zIn)−2 = Tr(V U − zId)−2 −
n− d
z2

(1.23)
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• Push-through identity:

(UV − zIn)−1U = U(V U − zId)−1 (1.24)

• Block inversion formula:[
A B
C D

]−1
=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(1.25)

where An×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m.

• Sherman-Morrison lemma: Let A ∈ Rd×d denote an invertible matrix and u,v ∈ Rd×d two
vectors such that v>A−1u 6= −1. Then:

(A+ uv)−1 = A−1 − A
−1uv>A−1

1 + v>A−1u
(1.26)

2 Probability

A few good references to catch up:

• Roman Vershynin’s book “High-dimensional probability: an introduction with applications in
data science”, freely available online.

• Chapter 1 of Philippe Rigollet and Jan-Christian Hütte lecture notes on “High-Dimensional
Statistics”, freely available online.

2.1 Geometry of random variables

Definition 4 (Lp norm of a r.v.). Let X denote a random variable. The Lp norm of X is given by:

||X||Lp = (E[|Xp|])1/p , p ∈ [1,∞) (2.1)

This can be extended to p =∞ by defining:

||X||L∞ = ess sup|X| (2.2)

It can be shown that indeed this defines a norm, and therefore the linear space:

Lp = {X : ||X||Lp ≤ ∞} (2.3)

defines a Banach space.

Remark 3. Definition 4 still makes sense for p ∈ (0, 1). However, in this case || · ||Lp is not a norm.

The space L2 is also a Hilbert space, with inner product defined as:

〈X,Y 〉L2 = E[|XY |] (2.4)

Note that ||X||Lp is an increasing function of p. This implies the following inclusion of Lp spaces:

L∞ ⊂ · · · ⊂ L2 ⊂ L1 (2.5)

This is quite intuitive: a bounded random variable has all moments, a random variable with p moments
has all p − 1 moments, and so on. However, having finite p moments for all p does not imply X is
almost surely bounded. The Gaussian distribution is an example.
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Lemma 3. Let G ∼ N (0, 1), then for all p ∈ [1,∞):

||G||Lp ≤
√
p (2.6)

and ||G||L∞ =∞ since Gaussian variables are unbounded.

Lp spaces are a particular case of a more general geometry of random variables, known as Orlicz
spaces.

Definition 5 (Orlicz spaces). Let ψ denote a convex increasing function such that:

lim
x→0

ψ(x) = 0, lim
x→∞

ψ(x) =∞. (2.7)

For any random variable X, we define the Orlicz norm of X as:

||X||ψ = inf{k > 0 : E[ψ(|X|/k)] ≤ 1} (2.8)

Further, we define the Orlicz space associated to ψ as:

Lψ = {X : ||X||ψ <∞} (2.9)

Note that for ψ(x) = xp, we retrieve Lψ = Lp. However, Orlicz spaces allow us to defined a
more refined geometry of random variables, that allow us to distinguish different classes of random
variables that have all moments but are not necessarily bounded. For instance, ψp(x) = ex

p − 1
defines a family of Orlicz spaces Lψp that sit exactly in between Lp and L∞. For instance, note that
Lψ1 ⊂ Lp since exponentials grow faster than polynomials. However, L∞ ⊂ Lψ1 since the expectation
of the exponential of a bounded random variable is finite. Therefore, L∞ ⊂ Lψ1 ⊂ Lp for any p > 1.
More generally, Lψp define a hierarchy of Orlicz spaces based on the tails of the distributions, with
tails which are lighter as p increases. Two important examples are sub-exponential and sub-Gaussian
random variables.

Definition 6 (Sub-Gaussian r.v.). A random variable X is sub-Gaussian if:

||X||ψ2 = inf

{
C > 0 : E

[
exp

(
X2

C2

)]
≤ 2

}
≤ ∞ (2.10)

In other words, it is the Orlicz space Lψ2 with ψ2(x) = ex
2 − 1. The following are equivalent charac-

terisations:

• Gaussian tails: ∃c1 such that for all t > 0:

P(|X| ≥ t) ≤ 2e
− t

2

c21 (2.11)

• Moments: ∃c2 such that for all p > 1:

||X||Lp ≤ c2
√
p (2.12)

• Moment generating function: ∃c3 such that if E[X] = 0:

E[etX ] ≤ ec23t2 , t ∈ R (2.13)

Example 3. Some popular examples of sub-Gaussian random variables are:

• Gaussian random variables are sub-Gaussian. In particular, if we have G ∼ N (0, σ2), then:

||G||ψ2 ≤ Cσ (2.14)
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• Bernouilli random variables X ∼ Ber(1/2) are sub-Gaussian random variables. In particular, we
have:

||X||ψ2 ≤
1√

log 2
(2.15)

• Bounded random variables are sub-Gaussian random variables. In particular, we have:

||X||ψ2 ≤
||X||L∞√

log 2
(2.16)

Intuitively, sub-Gaussian variables are variables that have the same tail as Gaussian random vari-
ables. We can define sub-exponential random variables similarly.

Definition 7 (Sub-Exponential r.v.). A random variable X is sub-exponential if:

||X||ψ1 = inf

{
C > 0 : E

[
exp

(
X

C

)]
≤ 2

}
≤ ∞ (2.17)

In other words, it is the Orlicz space Lψ2 with ψ2(x) = ex − 1. The following are equivalent charac-
terisations:

• Exponential tails: ∃c1 such that for all t > 0:

P(|X| ≥ t) ≤ 2e
− t

c21 (2.18)

• Moments: ∃c2 such that for all p > 1:

||X||Lp ≤ c2p (2.19)

• Moment generating function: ∃c3 such that if E[X] = 0:

E[etX ] ≤ ec23t2 , |t| ≤ 1/c3 (2.20)

Remark 4. Note that from the perspective of the MGF, the only difference between sub-exponential
and sub-Gaussian random variables is that the former holds for t bounded. Therefore, we can infor-
mally view sub-Gaussian random variables as the class sub-exponential random variables with c3 → 0.

Proposition 1. A random variable X is sub-Gaussian if and only if X2 is sub-exponential. Moreover:

||X2||ψ1 = ||X||2ψ2
(2.21)

2.2 Classical inequalities

In this section, we review some classical inequalities in probability.

Proposition 2 (Jensen’s inequality). Let X denote a real-valued random variable. Then, for any
convex function ϕ:

ϕ(E[X]) ≤ E[ϕ(X)] (2.22)

4! It is a common mistake to inverse the direction of Jensen’s inequality.

Proposition 3 (Holder’s inequality). For any random variablesX ∈ Lp and Y ∈ Lq where p, q ∈ [1,∞]
are conjugate variables 1/p + 1/q = 1:

|E[XY ]| ≤ ||X||p||Y ||q (2.23)

Remark 5. The case p = q = 2 is known as the Cauchy-Schwarz inequality:

|E[XY ]| ≤ ||X||L2 ||Y ||L2 (2.24)

Proposition 4 (Minkowski’s inequality). For any random variables X,Y ∈ Lp and p ∈ [1,∞]:

||X + Y ||p ≤ ||X||p + ||Y ||p (2.25)
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2.3 Tail inequalities

Proposition 5 (Markov’s inequality). Let X denote a non-negative random variable. Then for all
t > 0:

P(X ≥ t) ≤ E[X]

t
(2.26)

i.e. the probability that X is at least t is at most the expectation divided by t. Note that when
E[X] > 0 we can equivalently write:

P(X ≥ t E[X]) ≤ 1

t
(2.27)

Proposition 6 (Chebyshev’s inequality). Let X denote a random variable with mean E[X] = µ and
Var(X) = σ2. Then, for all t > 0

P(|X − µ| ≥ t) ≤ σ2

t2
(2.28)

Proposition 7 (Chernoff’s inequality). Let X denote a real random variable. Then, for all a ∈ R
and t > 0:

P(X ≥ a) ≤ E[et(X−a)] (2.29)

Note that this holds for all t > 0, it is also common to take the infimum over t:

P(X ≥ a) ≤ inf
t≥0

E[et(X−a)] (2.30)

2.4 Concentration inequalities for the sum of random variables

Proposition 8 (Hoeffding’s inequality). Let X1, . . . , Xn denote independent, zero mean sub-Gaussian
random variables. Then, for every t > 0, we have:

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

− ct2

n∑
i=1
||Xi||2ψ2

 (2.31)

where || · ||ψ2 is the sub-Gaussian norm from definition 6.

Remark 6 (Particular cases of Hoeffding’s inequality). The following particular cases of Hoeffding’s
inequality are useful.

• Bernouilli: Let X1, . . . , Xn denote independent symmetric Bernouilli random variables, i.e.
Xi ∈ {−1,+1} with:

P(Xi = −1) = P(Xi = +1) =
1

2
. (2.32)

In this case, applying proposition 8 leads to the following tail bound:

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2e−

t2

2n (2.33)
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• Bounded: Let X1, . . . , Xn denote independent random variables which are bounded almost

surely, i.e. Xi ∈ [ai, bi] a.s. Then, for all t > 0 their sum Sn =
n∑
i=1

Xn satisfy:

P (Sn − ESn ≥ t) ≤ exp

− 2t2

n∑
i=1

(bi − ai)2


(2.34)

Proposition 9 (Bernstein’s inequality). Let X1, . . . , Xn note independent sub-exponential random

variables with E[Xi] = 0. Then, there exists a constant c such that for all t > 0 the sum Sn =
n∑
i=1

Xi

satisfy:

P(|Sn| ≥ t) ≤ 2 exp

(
−cmin

(
t2

σ2
,
t

k

))
(2.35)

where c > 0 is an absolute constant and:

σ2 =

n∑
i=1

||Xi||ψ1 , k = max
i∈[n]

||Xi||ψ1 (2.36)

where || · ||ψ1 is the sub-exponential norm from definition 7.

2.5 Convergence of random variables

In this appendix, we review the different notions of convergence for random variables. Let (Ω,F ,P)
denote a probability space. We start with one of the strongest forms of convergence:

Definition 8 (Almost sure convergence). We say a sequence of random variables (Xn)n≥1 converges

almost surely (a.s.) to a random variable X and denote Xn
a.s.→ X if there exists a measurable set

Ω′ ∈ F such that:

• P(Ω′) = 1.

• For all ω ∈ Ω′, limn→∞Xn(ω) = X(ω)

Intuitively, almost sure convergence means that Xn → X just as for deterministic variables, excepts
perhaps for exceptional events that have probability zero as n→∞ (hence the “almost”).

Definition 9 (Convergence in probability). We say a sequence of random variables (Xn)n≥1 converges

in probability to a random variable X and denote Xn
P→ X if for every ε > 0:

lim
n→∞

P(|Xn −X| > ε) = 0 (2.37)

While almost sure convergence is a statement about the convergence of values taken by a ran-
dom variable, convergence in probability is a statement about the convergence of probabilities. A
particularly intuitive case is when the limiting random variable X is deterministic, i.e. X = x with
probability 1. In this case, we can visualise the convergence in probability as the distribution of Xn

getting more and more peaked around X = x as n→∞.

Example 4. Let Xn ∼ Unif([− 1
n ,

1
n ]) denote a sequence of uniform random variables. We have

Xn
P→ 0.
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Almost sure convergence implies convergence in probability (see Grimmett and Stirzaker (2020)
for a proof), but the converse is not true. A standard example is the following:

Example 5. Consider a sequence of binary random variables Xn ∈ {0, 1} such that:

P(Xn = 1) =
1

n
, P(Xn = 0) = 1− 1

n
(2.38)

Then, we have Xn
P→ 0 since:

limP(Xn = 1) = 0, limP(Xn = 0) = 1 (2.39)

However, Xn does not converge almost surely to 0. To see this, consider the event that Xn takes the
value 1: En = {Xn = 1}. We have:

∞∑
n=1

P(En) =
∞∑
n=1

1

n
=∞ (2.40)

By the Borel-Cantelli lemma, a sequence of independent events with probability that sum to ∞ must
happen infinitely often.

Definition 10 (Convergence in Lp). We say a sequence of random variables (Xn)n≥1 converges in Lp

(or p-th mean) to a random variable X and denote Xn
Lp→ X if:

lim
n→∞

E[|Xn −X|p] = 0 (2.41)

Note that this is equivalent to convergence in Lp(P) norm. Convergence in Lp implies convergence
in probability, but the converse if not true. Note that convergence in Lp does not implied and does
not imply almost sure convergence: in general these are unrelated.

Example 6. Let U ∼ Unif([0, 1]), and define:

Xn =
√
n 1(0,1/n)(U) =

{√
n if U ∈ (0, 1/n)

0 otherwise
(2.42)

Then, Xn convergences in probability to 0 since for all 0 < ε < 1:

P(|Xn| > ε) = P
(√
n1(0,1/n)(U) > ε

)
= P

(
0 ≤ U ≤ 1

n

)
=

1

n
(2.43)

which goes to zero as n→∞. However, Xn does not converge to zero in L2 since:

E[X2
n] = n

∫ n/2

0
dt = 1 (2.44)

Note that all the notions so far easily generalise to random vectors or matrices by simply taking an
adapted norm. Finally, the last common notion of convergence is convergence in distribution, which
we first define for real valued variables:

Definition 11 (Convergence in distribution). We say a sequence of random variables (Xn)n≥1 con-

verges in distribution to a random variable X and denote Xn
d→ X if:

lim
n→∞

P(Xn ≤ t) = P(X ≤ t) (2.45)

for all t for which the c.d.f. P(X ≤ t) is continuous.
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Convergence in distribution is the weakest form of convergence discussed here. Indeed, it is implied
by convergence in probability (and hence by both almost sure and Lp convergence). Note that the
condition “for all t for which the c.d.f. P(X ≤ t) is continuous” is important, as highlighted by the
following example:

Example 7. Consider a sequence of Gaussian random variables with decreasing variance Xn ∼
N (0, 1/n). We have:

lim
n→∞

P(Xn ≤ x) = lim
n→∞

1

2

[
1 + erf

(
x√
2n

)]
=


1 if x > 0
1
2 if x = 0

0 if x < 0

(2.46)

Therefore, Xn
d→ X with P(X = 0) = 1 which has c.d.f. P(X ≤ x) = Θ(x), since the discontinuity

point x = 0 can be ignored.

Since this definition of convergence in distribution relies on the c.d.f., if does not straightforwardly
generalise to random vectors. A more adapted and equivalent notion is known in this context as weak
convergence:

Definition 12 (Weak convergence). We say a sequence of random vectors (Xn)n≥1 in Rd weakly

converges to a random vector X and denote Xn
d→ X if for any bounded continuous function f :

Rd → R:

lim
n→∞

E[f(Xn)] = E[f(X)] (2.47)

This definition can be easily extended to any metric space. Note that “bounded continuous” f can
also be exchanged for “bounded Lipschitz”. Several equivalent characterisations of weak convergence
are given by the Portmanteau lemma.

Summary

We can summarise the discussion in this Appendix in Figure 1. Note that several converse results
under stronger assumptions exist. We refer the reader to Chapter 7 of Grimmett and Stirzaker (2020)
for a full discussion. Finally, we state the following result which is useful in the context of statistics:

Almost Surely Probability Weak / Distribution

Lp

Figure 1: Different notions of convergence for random variables, with the respective implications.

Lemma 4. Let Xn be an unbiased estimate of α ∈ R. Then, if Var(Xn) → 0 as n → ∞, Xn
L2

→ α
(and hence also in probability).

Proof. By definition, we have E[Xn] = α. Therefore:

E[|Xn − α|2] = E[|Xn − E[Xn]|2] = Var(Xn)→ 0 as n→∞ (2.48)

which implies convergence in squared-mean.
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2.6 Limit theorems

Theorem 3 (Strong law of large numbers). Let X1, . . . , Xn be a sequence of i.i.d. random variables
with mean E[Xi] = µ, and consider the empirical mean:

X̄n =
1

n

n∑
i=1

Xi (2.49)

Then, as n→∞:

X̄n
a.s.−−→ µ (2.50)

Theorem 4 (Lindeberg-Lévy central limit theorem). Let X1, . . . , Xn be a sequence of i.i.d. random
variables with mean E[Xi] = µ and variance Var(Xi) = σ2 <∞, and consider the empirical mean:

X̄n =
1

n

n∑
i=1

Xi (2.51)

Then, as n→∞:

√
n(X̄n − µ)

d−→ N (0, σ2) (2.52)

In other words, letting Zn =
√
n/σ(X̄n − µ), for any t ∈ R:

P(|Zn| ≥ t) −→ P(|G| ≥ t) =

∫ ∞
t

dx√
2π
e−

x2

2 (2.53)

point-wise as n→∞.

Corollary 1. Let X1, . . . , Xn be a sequence of i.i.d. random variables with mean E[Xi] = µ finite
variance. Then:

E[|X̄n − µ|] = O(1/
√
d), as n→∞ (2.54)

3 Analysis

3.1 Lipschitz functions

In the course, we will often need to control the regularity of function. A particularly useful notion
of regularity is how the slope/derivative of the function changes point-wise. Functions which have a
“gentle” change of the slope are more regular than “spiky” functions for which the slope can vary
abruptly. This notion is formalised by Lipschitz function.

Definition 13 (Lipschitz function). Let (X, dX) and (Y, dY ) denote metric spaces. A function f :
X → Y is called L-Lipschitz if there exists L ∈ R such that for all x, y ∈ X:

dY (f(x), f(y)) ≤ L · dX(x, y) (3.1)

The constant L is known as the Lipschitz constant of f , and the infimum over all L defines a norm,
known as the Lipschitz norm of f :

||f ||Lip = inf {L ∈ R : dY (f(x), f(y)) ≤ L · dX(x, y) for all x, y ∈ X} (3.2)

Lipschitz functions with ||f ||Lip < 1 are also known as contractions.
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A particular example of interest for the lectures is the case of functions in a normed vector space,
where X = Rn and Y = R and eq. (3.1) reads:

|f(x)− f(y)| ≤ L||x− y|| (3.3)

Proposition 10 (Properties of Lipschitz functions). Lipschitz functions satisfy the following proper-
ties:

1. Every Lipschitz function is uniformly continuous.

2. Every differentiable function f : Rn → R is Lipschitz, and:

||f ||Lip ≤ sup
x∈Rn
||∇f(x)||2 (3.4)

3. The composition of two Lipschitz maps is Lipschitz, with:

||f ◦ g||Lip = ||f ||Lip||g||Lip (3.5)

4! The converse is not true: there are functions which are not everywhere differentiable but are
still Lipschitz, for example f(x) = |x| is a 1-Lipschitz function since ||x|− |y|| ≤ |x−y| for all x, y ∈ R.

Example 8. Some useful examples of Lipschitz functions.

• For a fixed vector θ ∈ Rn, the inner product:

f(x) = 〈θ,x〉 (3.6)

is a Lipschitz function on Rn with:

||f ||Lip = ||θ||2 (3.7)

• More generally, any matrix A ∈ Rn×d acting as a linear operator:

A : Rd → Rn

x 7→ Ax

Is a Lipschitz function with:

||A||Lip = ||A||op (3.8)

• Any norm f(x) = ||x|| on Rn is a Lipschitz function. The Lipschitz norm of f is the smallest f
that satisfies:

||x|| ≤ L||x||2, for all x ∈ Rn (3.9)

For example, the L1 norm:

f(x) = ||x||1 =
n∑
i=1

|xi| (3.10)

is a Lipschitz function with Lipschitz constant L =
√
n. More generally, the Lp norms have

Lipschitz constant L = nmax(0,1/2−1/p).

• The rectified linear unit f(x) = max(0, x) is a 1-Lipschitz function.

13



• The Logistic loss `(x) = log(1 + e−x) is a 1-Lipschitz function.

• The Hinge loss `(x) = max(0, 1− x) is a 1-Lipschitz function.

It is also useful to have in mind examples of functions which are not Lipschitz (and why). The most
common features of non-Lipschitz functions are: (a) unbounded derivative/slope; (b) Discontinuities;
(c) Infinite oscillations. In some cases, a Lipschitz function can be defined by restricting the domain
of non-Lipschitz functions to exclude the singularities. Below, we give a few useful examples:

Example 9. The following functions are not Lipschitz everywhere in their domain.

• The logarithm f(x) = log x is not a Lipschitz function in R+ since f ′(x) = 1
x . However, it is a

Lipschitz function in any domain [a,∞) with a > 0, with Lipschitz constant L = 1/a.

• The quadratic function f(x) = x2 is not Lipschitz in R since its derivative f ′(x) = x is un-
bounded. However, the truncated quadratic f(x) = min(1, x2) is a Lipschitz function with
constant L = 2.

• The square root function f(x) =
√
x is not a Lipschitz function in R+ since f ′(x) = 1/2

√
x grows

unbounded as x→ 0+. However, it is a Lipschitz function in any interval [a,∞) with a > 0 with
Lipschitz constant L = 1/2

√
x.

• The exponential function f(x) = ex is not Lipschitz.

• The Heavyside step function:

Θ(x) =

{
1 for x ≥ 0

0 for x < 0
(3.11)

is not Lipschitz because of the discontinuity at x = 0.

• The function f(x) = sin(1/x) is not Lipschitz on (0,∞), due to the fast oscillations close to
0+. One can define a Lipschitz function by restricting it to an interval [a,∞) with a > 0, with
Lipschitz constant L = 1/a2

4 Big-O notation

In these notes, we often employ the so-called Big-O notation, a handy way of comparing the order
of magnitude or limiting behaviour of functions. In this appendix, we give a formal definition and
discuss some intuition.

Definition 14 (Big-O notation). Let f, g : R→ R denote two real-valued functions. We say:

• “f(x) is big-O of g(x)” and write f(x) = O(g(x)) as x → ∞ if there exists M > 0 and x0 ∈ R
such that:

|f(x)| < M |g(x)| for all x > x0 (4.1)

Intuitively, f(x) = O(g(x)) means f(x) is “at most” g(x), meaning that one can make it f(x)
as large as g by multiplying by a constant (with respect to x0). It is used to denote asymptotic
upper bounds. If g(x) is non-zero beyond a certain point, this is equivalent to:

lim sup
x→∞

f(x)

g(x)
<∞ (4.2)
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• “f(x) is little-O of g(x)” and write f(x) = o(g(x)) as x → ∞ if for every ε > 0, there exists
constant x0 ∈ R such that:

|f(x)| < ε|g(x)| for all x > x0 (4.3)

Intuitively, f(x) = o(g(x)) means that g(x) grows much faster than f(x), or equivalently that
f(x) is of lower order than g(x). If g(x) is non-zero beyond a certain point, this is equivalent to:

lim
x→∞

f(x)

g(x)
= 0 (4.4)

Note that both notions can be easily generalised for other limits than infinity.

Remark 7. Although it is widespread to write f(x) = O(g(x)) and f(x) = o(g(x)), the use of the
equality is an abuse of notation, since this is not a symmetric statement. For instance, O(x) = O(x2)
but O(x2) 6= O(x). The equality here should be understood in the same sense as we use in English:
“Aristotle is a man, but a man is not necessarily Aristotle”. A more precise notation would be to saw
f(x) < O(g(x)) or f(x) ∈ O(g(x)), with O(g(x)) thought as a class of functions h satisfying eq. (4.6).

Properties 1. The following important properties hold:

• Multiplicative constants are irrelevant: if f(x) = O(g(x)), then 100f(x) = O(g(x)).

• When adding two functions, we only care about the larger one. For example x3+100x2 = O(x3).

• For all a, b > 0, we have xa = O(xb) if and only if a ≤ b and xa = o(xb) if and only if a < b.

• Polynomials are always smaller than exponentials: xa = o(ex
ε
) for every a, ε > 0, even if ε is

much smaller than a. For example, x100 = o(e
√
x).

• Logarithms are always smaller than polynomials: (log x)a = o(xε) for all a, ε > 0, even if ε is
much smaller than a. For example, 100x2 log x = o(x3).

An useful and related notion is the big-Theta:

Definition 15 (Big-Θ). Let f, g : R→ R denote two real-valued functions. We say “f is theta of g”
and write f(x) = Θ(g(x)) as x→∞ if both f(x) = O(g(x)) and g(x) = O(f(x)) as x→∞. In order
words, there exists constants m,M > 0 and x0 ∈ R such that for x > x0:

mg(x) < f(x) < Mg(x) (4.5)

Intuitively, f(x) = Θ(g(x)) means that f is of the same order as g. It is also common to see the
notation f(x) � g(x) and to say f and g are asymptotically equivalent.

A complementary notion, often used in the context of computer science is the big-Ω.

Definition 16 (Big-Ω notation). Let f, g : R→ R denote two real-valued functions. We say:

• “f(x) is big-Ω of g(x)” and write f(x) = Ω(g(x)) as x→∞ if g(x) = O(f(x)) as x→∞. More
precisely, there exists M > 0 and x0 ∈ R such that:

|f(x)| > M |g(x)| for all x > x0 (4.6)

Intuitively, f(x) = O(g(x)) means f(x) is “at least” g(x). It is used to denote asymptotic lower
bounds. If g(x) is non-zero beyond a certain point, this is equivalent to:

lim inf
x→∞

f(x)

g(x)
> 0 (4.7)
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• “f(x) is little-ω of g(x)” and write f(x) = ω(g(x)) as x→∞ if g(x) = o(f(x)) as x→∞. More
precisely, for every ε > 0, there exists constant x0 ∈ R such that:

|f(x)| > ε|g(x)| for all x > x0 (4.8)

Intuitively, f(x) = ω(g(x)) means that f(x) dominates g(x) asymptotically. If g(x) is non-zero
beyond a certain point, this is equivalent to:

lim
x→∞

f(x)

g(x)
=∞ (4.9)

Example 10. Some examples with Big-Ω:

• 4x2 − 3x+ 2 = Ω(x2)

• x5 = ω(x4)

• ex = ω(xa) for any a > 0.
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