
Mathematics of Deep Learning

Lecture 7: Implicit bias of descent algorithms

Bruno Loureiro

Département d’Informatique, École Normale Supérieure - PSL & CNRS, France

28/02/2025

Typos, comments or suggestions? Get in touch at: bruno.loureiro@di.ens.fr

1 Motivation

So far, our discussion has focused mostly on the approximation and estimation properties of statistical
models. However, one central ingredient in modern machine learning has been missing from our
discussion: the training algorithm.

For strictly convex problems (such as the ridge regression with λ > 0), the training algorithm indeed
plays a minor role: the minimiser is unique, and any “good enough” algorithm should convergence to it
— with the only difference being the computational efficiency. The situation, however, is very different
for non-convex problems where more than one minima can be present. In this case, different choices
of algorithm (including here initialisation and choices of hyperparameter, e.g. learning rate schedule,
mini-batch sampling, stopping time, etc.) can lead to different estimators with potentially drastic
differences in the generalisation performance, see e.g. (Liu et al., 2020). This can be particularly
striking in problems with more than a global minima, for instance in overparametrised networks
which can be trained down to achieve zero training loss (i.e. perfectly interpolate the training data).
In this case, different algorithms might converge to different interpolators, all achieving zero loss, but
which can have different generalisation performances — see fig. 1 for an illustration.

The fact that different choices of algorithm lead to predictors with different statistical properties is
known as the implicit bias of algorithms.1 Characterising the implicit biases of widely used algorithms
such as gradient descent and stochastic gradient descent is an active research field. In this lecture, we
will study two of the simplest examples.

The discussion that follows was greatly inspired by a post in the blog of Francis Bach, written by
Pillaud-Vivien and Pesme (2022), as well as Scott Pesme’s PhD manuscript.

I = {θ : L(θ) = 0}

θ′0

θ0

θgd∞
θ′gd∞

θsgd∞

Figure 1

1Perhaps worryingly, the naming suggests that these are biases which often get forgotten.

1

mailto:brloureiro@gmail.com
https://scottpesme.github.io/Articles/Scott_PhD_Manuscript.pdf

2 Implicit bias in least-squares regression

As motivated above, algorithmic bias is mostly relevant in problems for which the loss has more than a
single critical point. Arguably the simplest such problem is least-squares regression in the overspecified
regime (d > n), which we now review.

2.1 Recap of OLS

Consider a supervised learning regression problem with training data D = {(xi, yi) ∈ Rd+1 : i ∈ [n]}.
Assume for simplicity that the data matrix X ∈ Rn×d is full-rank. The lest-squares problem is defined
as:

min
θ

R̂n(θ) :=
1

2n

n∑
i=1

(yi − 〈θ,xi〉)2 (2.1)

The Hessian of the empirical risk is simply the empirical covariance of the data:

∇2R̂n(θ) =
1

n
X>X =: Σ̂n (2.2)

which is positive semi-definite. This implies that R̂n is a convex function of θ ∈ Rd. However, it is
not necessarily strictly convex: this is only the case for n ≥ d for which X>X is positive-definite. For
n < d, the empirical risk is just convex, meaning it can have more than one global minimum. How do
global minimum look like?

Overdetermined regime (n ≥ d) — The empirical risk is non-negative R̂n(θ) ≥ 0, with equality
R̂n(θ) = 0 for a predictor that perfectly interpolates the training data Xθ̂ = y. Finding an interpo-
lator is equivalent to solving a system of n equations with d independent variables (since we assumed
X full rank). In particular, this is not possible when n > d: there are more equations than variables,
and the system is overdetermined. Nevertheless, the unique solution to the OLS problem in eq. (2.1)
is given by:

θ̂ols(X,y) = (X>X)−1X>y, n ≥ d (2.3)

which, for n > d has strictly positive training error R̂n(θ̂ols) > 0. For n = d, X becomes invertible
and the unique interpolator given by θ̂ols(X,y) = X−1y.

Overdetermined regime (n < d) — It is easy to see that for n < d the solution:

θ̂ols(X,y) = X>(XX)−1y, n ≤ d (2.4)

is an interpolator. Note it is precisely the limit of the ridge regressor when we take λ→ 0+. However,
this interpolator is not unique. Indeed, for any vector v ∈ Ker(X),2 the sum θ̂ols + v is also an
interpolator, since by definition Xv = 0. This means that the space of interpolators define an affine
space, which can be explicitly written as:

I = {θ̂ ∈ Rd : Xθ = y} = {X>(XX>)−1y + v : v ∈ Ker(X)}
= θ̂ols + Ker(X) (2.5)

The interpolator θ̂ols is also known as the minimum-`2 norm solution, since by the triangular inequality:

||θ̂ols + v||22 ≥ ||θ̂ols||22 + ||v||22 (2.6)

2Recall that for n < d, Ker(X) 6= Ø and that it is isomorphic to a d− n space.

2

which implies it has the smallest Euclidean norm of all elements of I. In other words, it is the solution
of:

min ||θ||22, such that Xθ = y (2.7)

In learning theory, it is common to use norms || · ||p as a proxy for the complexity of a hypothesis class,
and a common objective is to find predictors with low complexity, which are often associated with
better generalisation. From this perspective, the minimum-`2 norm predictor θ̂ols is the least complex
interpolator with respect to || · ||2.
4! We don’t mean that the minimum-`2 norm predictor is the one with best generalisation in

I. Indeed, whether θ̂ols generalises better than, e.g. the minimum-`1 predictor, will crucially depends
on the target function f?(x) = E[y|x].

Now consider minimising eq. (2.1) in the underdetermined regime n < d using a descent-based
algorithm, such as gradient descent. To which interpolator in I will it converge to? We start by
answering this question in the context of gradient flow.

2.2 Implicit bias of gradient flow

Consider the gradient flow algorithm for the OLS problem:

θ̇(t) = −∇R̂n(θ) =
1

n
X>(y −Xθ) (2.8)

with initial condition θ(t) = θ0. This is a system of d coupled ODEs. To decouple them, let X =
UDV > denote the SDV of X:

θ̇(t) =
1

n
V
(
D>U>y −D>DV >θ(t)

)
(2.9)

Hence, defining β = V >θ(t) and ỹ = U>y, we have an autonomous system:

β̇j(t) =
σj
n

(ỹj − σjβj) (2.10)

Note that, depending on rank(X) = min(n, d), the equation above take a different shape.

Overspecified regime (n ≥ d) — For n ≥ d, rank(X) = d and hence σj > 0 for all j ∈ [d]. The
solution is therefore given by:

βj(t) =
ỹj
σj

+ e−
σ2j t

n

(
β0,j −

ỹj
σj

)
(2.11)

where β0 = V >θ0. Or, in terms of θ:

θ(t) =

d∑
j=1

[
〈uj ,y〉
σj

vj + e−
σ2j t

n

(
θ0 −

〈uj ,y〉
σj

vj

)]

= (X>X)−1X>y +

d∑
j=1

e−
σ2j t

n

(
θ0 −

〈uj ,y〉
σj

vj

)
(2.12)

As expected, this converges exponentially fast to θ̂ols in eq. (2.3) — no surprise, this is the unique
global minimum since the problem is strictly convex in this regime.

3

I = {θ ∈ Rd : Xθ = y}

θ0

θ∞ θ̂ols

θ0 + span(x1, . . . ,xn)

Figure 2: Implicit bias of gradient flow for in the underdetermined regime n < d. Gradient flow
converges to the orthogonal projection of the initial condition on the linear subspace of interpolators.

Underspecified regime (n < d) — In this case, rank(X) = n. Assuming that σj ≥ 0 is arranged
in non-increasing order, we have σj = 0 for all j > n. This means that the solution of eq. (2.10) is
now given by:

βj(t) =

 ỹj
σj

+ e−
σ2j t

n

(
β0,j − ỹj

σj

)
for 1 ≤ j ≤ n

β0,j for n < j ≤ d
(2.13)

which means that only the components of the initial condition which are in span(x1, · · · ,xn) ' Rn
change under the gradient flow, with the remaining components remaining constant. More precisely,
recall that we can always decompose Rd = range(X>)⊕ker(X), which induces the following orthogonal
decomposition of the initial condition θ0 = θ0,‖ + θ0,⊥ with θ0,‖ ∈ range(X>) and θ0,⊥ ∈ ker(X).
Therefore, we can write:

θ(t) = θ0,⊥ +X>(XX>)−1y +
d∑
j=1

e−
σ2j t

n

(
θ0,‖ −

〈uj ,y〉
σj

vj

)
(2.14)

In the long-time limit, this leads to:

θ∞ := lim
t→∞

θ(t) = θ0,⊥ +X>(XX>)−1y

= θ0,⊥ + θ̂ols(X,y) (2.15)

This corresponds to a particular interpolator I: the one which is closest (in Euclidean distance) to
the initial condition θ0:

θ∞ = arg min
θ∈I

||θ0 − θ||22 (2.16)

which is only equal to θ̂ols if θ0 = 0! See Figure 2 for an illustration.

2.3 Other descent algorithms

A natural question is whether gradient descent (the discretisation of gradient flow), or other descent-
based algorithms, such as SGD, have different implicit biases than the one discussed above. Consider
mini-batch SGD:

θk+1 = θk − ηk∇R̂bk(θk), with R̂bk(θ) =
1

2b

∑
i∈bk

(yi − 〈θ,xi〉)2 (2.17)

4

where ηk is a learning rate schedule and bk ⊂ [n] is a mini-batch of size b := |bk| ≤ n, which here we
assume is sampled uniformly and independently at each iteration. Note that GD is a particular case
of the above, obtained by choosing b = n at every step. The key observation is the gradient of the
empirical risk always lies in the span of the training data:

∇R̂bk(θk) = − 1

|bk|
∑
i∈bk

(yi − 〈θk,xi〉)xi ∈ span(x1, . . . ,xn) (2.18)

Therefore, for any iterate k, we have:

θk ∈ θ0 + span(x1, . . . ,xn) (2.19)

which is an (affine) n-dimensional space. Assuming that the iterates of this algorithm converge to an
interpolator θk → θ∞ ∈ I3, and recalling our characterisation of I from eq. (2.5):4

I = θ̂ols + ker(X) = θ̂? + span(x1, · · · ,xn)⊥. (2.20)

where in the second equality we used that, by definition, the kernel is orthogonal to the image. This
implies that:

θ∞ − θ0 ⊥ θ∞ − θ̂ols (2.21)

See fig. 2 for an illustration. Therefore:

||θ̂ols − θ0||22 = ||θ̂ols − θ∞||22 + ||θ̂∞ − θ0||22 ≥ ||θ̂∞ − θ0||22 (2.22)

In other words, we must have:

θ∞ = arg min
θ∈I

||θ0 − θ||22 (2.23)

Which is the same implicit bias of gradient flow. This means that, for the least-squares problem and
from the perspective of the implicit bias, there is no difference between GD and SGD. A similar con-
clusion can be proven for more complex descent algorithms, such as SGD with momentum. However,
it is important to stress that this property is specific to OLS, and is a direct consequence of the fact
that the gradient lives in the span of the data, which for n < d is a linear subspace of Rd. As we will
see next, more complicated architectures or loss functions will behave differently.

3 Implicit bias of diagonal linear networks

While the least-squares problem is instructive, it is too simple, missing some important features
related to the way neural network are parametrised. We now turn our attention to another problem
that remains simple enough so that an explicit mathematical analysis can be carried out, but that has
additional structure that will shed light on an important aspect of implicit bias: the interplay between
the network architecture and the training algorithm.

Consider the following model, known as a linear diagonal neural network :

f(x;u,v) =

d∑
j=1

ujvjxj = 〈u� v,x〉 (3.1)

where the u,v ∈ Rd are two vectors, and � denote the entry-wise product between vectors, also known
as the Hadamard product. This hypothesis can be equivalently seen in two ways:

3This can be proven under small enough constant learning rate ηk = η in the d > n regime. We won’t do it here, but
it is a reasonable assumption given that the problem is strongly convex when restricted to θk ∈ θ0 + span(x1, . . . ,xn).

4More generally, note this is true for any reference interpolator θ̂? ∈ I.

5

input
layer hidden layer

output
layer

input
layer hidden layer

output
layer

Figure 3: (Left) Standard fully connected two-layer neural network with d = p = 4 hidden-units and
a single output. (Right) Diagonal two-layer neural network with d = 4 input nodes and a single
output.

• First, it can be seen as a linear predictor f(x,θ) = 〈θ,x〉 with a particular parametrisation of
the weights θ = u� v ∈ Rd. Therefore, the statistical properties of our predictor are the same
as the linear predictor. However, as we will going to see below, the fact that we parametrise it
in a particular way has important consequences for optimisation.

• Alternatively, it can see it as a two-layer neural network f(x;θ) = 〈u, σ(Wx) with linear
activation σ(z) = z, p = d hidden-units and first-layer weights which are constrained to be a
diagonal matrix Wjk = vjδjk — hence the name diagonal neural network. See fig. 3 for an
illustration.

This model was introduced in Woodworth et al. (2020), and was motivated by previous work on
implicit bias of algorithms in matrix factorisation Gunasekar et al. (2017).

Remark 1 (Symmetry). This parametrisation has an obvious rescaling symmetry. Indeed, for any
non-zero vector b ∈ Rd we have:

f(x; b� u, b−1 � v) = f(x;u,v) (3.2)

where the inverse is applied component-wise. This symmetry will play an important role in what
follows.

As in the previous section, we will be interested in the empirical risk minimisation problem over a
batch of training data:

min
u,v∈Rd

L(u,v) :=
1

2n

n∑
i=1

(yi − 〈u� v,xi〉)2 (3.3)

The first important observation is that although the empirical risk is a convex function of the product
θ = u� v, it is not a convex function of u,v! This means that in principle L(u,v) can have several
critical points. To get some intuition, it is instructive to look at the n = d = 1 case, where the loss
read:

min
(u,v)∈R2

L(u, v) :=
1

2
(y − uv)2 (3.4)

where without loss of generality we set x = 1. It is clear that the global minima manifold is given by
the hyperbola uv = 1. Since ∂uL = −(y − uv)v and ∂vL = −(y − uv)u, the only other critical point
is the saddle-point u = v = 1. See fig. 4.

6

2 1 0 1 2
u

2

1

0

1

2

v

Contour Plot of the Loss Function L(u, v)
Saddle Point (0,0)

0.0

2.7

5.4

8.1

10.8

13.5

16.2

18.9

21.6

24.3

Lo
ss

 Fu
nc

tio
n

Va
lu

e

Figure 4: Contour plot of the loss L(u, v) = 1/2(y − uv)2 for y = 1. The interpolation manifold is
given by the hyperbola uv = 1, shown in solid red. The only other critical point is a saddle point at
u = v = 0.

Remark 2. The phenomenology above is quite general. Indeed, by introducing a constraint θ = u�v
on the overparametrised space (u,v) ∈ R2d we introduce a symmetry that effectively degenerates the
global minima of the original problem into a full orbit of the group.

As we will see, when n, d > 1, things are similar, except that we have additional saddle-points.
For concreteness, we focus the discussion that follows to the underspecified regime d > n.

3.1 Properties of the landscape

As a starting point, we show that all the extremisers of R̂n must be global minima. To see this,
consider the map:

θ : (u,v) ∈ R2d 7→ u� v ∈ Rd., (3.5)

and note that L(u,v) = (R̂n ◦ θ)(u,v). Since the map θ is differentiable at R2d, by the chain rule we
have:

∇(u,v)L(u,v) = Jθ(u,v)>∇θR̂n(θ) (3.6)

where Jθ(u,v) ∈ Rd×2d is the Jacobian matrix of θ at (u,v) ∈ R2d. This implies that critical points
of L(u,v) are either critical points of R̂(θ) — which by convexity are global minima — or elements
or in the kernel of the Jacobian. Since we have:

∂ujθk = vkδjk, ∂vjθk = ukδjk (3.7)

the Jacobian is a full-rank matrix rank(Jθ(u,v)) = d whenever the coordinates of u and v are not
simultaneously zero (check this!). In other words, the critical points of L which are not critical points
of R̂n necessarely have (uj , vj) = (0, 0) for some j ∈ [d]. However, these points cannot be extremisers
of the loss, since the loss is flat across these directions. To see this, consider (u,v) ∈ Rd such that
(uj , vj) = (0, 0) for some j ∈ [d]. Then, it is easy to check that the L(u,v + αej) = L(u,v) where
ej ∈ Rd is the basis vector (similarly for u + αej , by symmetry). Recalling that by definition local

7

minima (maxima) are such that moving in their neighbourhood increase (decrease) the loss, we can
conclude that the only local extremisers of L(u,v) are the global minima (i.e. the extremisers of R̂n).

Recall from section 2 that in the underspecified regime n < d, these are the interpolators I = {θ ∈
Rd : Xθ = y}. Therefore, accounting for the symmetry eq. (3.2), we can write the global minimisers
of L(u,v) as:

arg min
(u,v)∈R2d

L(u,v) =
{(

sign(θ?)
√
|θ?| � b,

√
|θ?| � b−1

)
: θ? ∈ I, b ∈ Rd, b 6= 0

}
. (3.8)

where the non-linear operations are understood entry-wise. Now let’s look at the remaining critical
points. From the discussion above, we know these are saddle-points (uc,vc) ∈ R2d with a subset of
coordinates (uc,j , vc,j) = (0, 0), and hence θc,j := θj(uc,vc) = 0. Consider the gradient of L:

∇uL(u,v) = − 1

n
v �X>

(
y −X>(u� v)

)
= v �∇θR̂(u� v)

∇vL(u,v) = − 1

n
u�X>

(
y −X>(u� v)

)
= u�∇θR̂(u� v) (3.9)

To have a critical point, we need ∇uL = ∇vL = 0. An obvious choice is (u,v) = (0,0). For
(u,v) 6= (0,0), since a subset of the coordinates is zero, this is automatically satisfied for these
coordinates. In the remaining coordinates, we effectively have an OLS problem. To formalise this,
define the support of a vector:

supp(θ) = {j ∈ [d] : θj 6= 0}. (3.10)

Then, the previous condition can be written ∇θR̂n(θ)j = 0 for j /∈ supp(θc). This allow us to
characterise the saddle-points of L directly in terms of R̂n as:

θc ∈ arg min
θj=0 for j /∈supp(θc)

R̂n(θ) (3.11)

4! Note that due to the symmetry eq. (3.2), all points in the orbit of a saddle-point (uc,vc) ∈ R2d

are also saddle points.
We can summarise the properties of the loss landscape in the following proposition.

Proposition 1. The critical points of the empirical risk eq. (3.3) in the underspecified regime d > d
are characterised as follows.

• The only extremisers of L(u,v) are global minima, which can be written as:

arg min
(u,v)∈R2d

L(u,v) =
{(

sign(θ?)
√
|θ?| � b,

√
|θ?| � b−1

)
: θ? ∈ I, b ∈ Rd, b 6= 0

}
. (3.12)

where I = {θ ∈ Rd : Xθ = y} are the set of OLS interpolators.

• All the other critical points are saddle-points, given by θc = θ(uc,vc) such that:

θc ∈ arg min
θj=0 for j /∈supp(θc)

R̂n(θ) (3.13)

3.2 The implicit bias of gradient flow

We now consider gradient flow for the linear diagonal network:

u̇(t) = −∇uL(u,v) =
1

n
v(t)�X>r(t) (3.14)

v̇(t) = −∇vL(u,v) =
1

n
u(t)�X>r(t) (3.15)

8

where for notational convenience we defined the displacement vector r(t) = y − X>(u(t) � v(t)).
In particular, we would like to compare how this dynamics differs from the gradient flow on R̂n in
eq. (2.8). For that, we can attempt to reconstruct the trajectory θ(t) = u(t)� v(t) from the above:

θ̇ =
d

dt
(u� v) = u̇� v + u� v̇

=
1

n
X>r(t)� (v2 + u2) (3.16)

where the squares are understood entry-wise. In principle, it is not clear how to close this equation in
θ. In order to achieve this, we note that the following quantity:

I(u,v) =
u2 − v2

2
(3.17)

is an integral of motion, i.e.:

İ = u� u̇− v � v̇ = 0 (3.18)

it is therefore conserved along the flow. With this, we can rewrite:

u2 + v2 =
√
θ2 + I2 (3.19)

where we remind the reader the square-root is understood component-wise. Therefore:

θ̇(t) = − 2

n
X>r(t)�

√
θ(t)2 + I2

= −2
√
θ(t)2 + I2 �∇θR̂n(θ) (3.20)

which is remarkably different from the simple gradient flow θ̇ = −∇θR̂n(θ). Unfortunately, solving
this non-convex flow explicitly is hard. In order to characterise the implicit bias, we will make the
following rewriting. Define the potential function:

φI(θ) =
1

2

d∑
j=1

(
θj sinh−1

(
θj
Ij

)
−
√
θ2j + I2j + Ij

)
(3.21)

Noting that:

∂θjφ = sinh−1
(
θj
Ij

)
(3.22)

It is easy to check that we can rewrite the flow in eq. (3.20) as:

d∇θφ
dt

= −∇θR̂n(θ) (3.23)

The reader who is familiar with convex optimisation will recognise this is a Mirror descent flow, the
zero learning rate limit of the Mirror descent algorithm. Mirror descent is an algorithm for constrained
optimisation that generalises the Euclidean projection into the constraint set to other geometries, in
this case implicitly defined by the Bregman divergence of a potential function φ:

Dφ(θ,θ′) = φ(θ)− φ(θ′)− 〈∇φ(θ),θ − θ′〉 (3.24)

Note that the Euclidean projection is recovered with the quadratic potential φ(θ) = 1/2||θ||22. The
advantage of writing this as a mirror flow is that, in the case in which the potential is a strictly convex
function, which is the case here:

∂θj∂θkφI(θ) =
1

2
√
θ2j + I2j

δjk > 0, (3.25)

9

2 1 0 1 2
1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
2

= 100

2 1 0 1 2
1

2

= 0.1

2 1 0 1 2
1

2

= 0.001

Figure 5: Contour plot of the potential φα defined in eq. (3.21) with I = α21d in the (θ1, θ2)-plane
for α ∈ {10−3, 0.1, 100}

strong guarantees from convex optimisation apply. For instance, it can be proved that the flow in
eq. (3.23) converge θ → θ∞, and that in the regime d > n this must necessarily be an interpolator
θ∞ ∈ I of R̂n. By the same argument as in section 2.2, since ∇θR̂n ∈ span(x1, . . . ,xn), eq. (3.23)
implies that for any t > 0:

∇θφI(θ(t)) ∈ ∇θφI(θ0) + span(x1, . . . ,xn) (3.26)

Moreover, we can repeat the argument in eq. (2.22) with the Bregman divergence instead of the
Euclidean norm. Indeed, for any interpolator θ̂ ∈ I

Dφ(θ̂,θ0) = Dφ(θ̂,θ∞) +Dφ(θ∞,θ0) + 〈∇φI(θ∞)−∇φI(θ0), θ̂ − θ∞〉︸ ︷︷ ︸
=0

≥ Dφ(θ∞,θ0) (3.27)

which implies that:

θ∞ = arg min
θ∈I

Dφ(θ,θ0) (3.28)

Or in words: GD converges to the interpolator which has minimal Bregman divergence to the initial
condition. Note that, as expected, this result recovers eq. (2.23) when φ(θ) = ||θ||22. Interpolators of
the type eq. (3.28) can be quite different from the ones in eq. (2.23) — we now discuss these differences
in detail.

Role of the initialisation — To study the differences in a concrete setting, we consider the
initial condition θ0 = 0. Recall from section 2.2 that in this case, gradient flow on the square loss
converges to θ̂ols = X>(XX>)−1y, the minimum `2-norm interpolator. What about the diagonal
neural network flow? The initial condition θ0 = u0 � v0 = 0 corresponds to a full family of initial
conditions on (u0,v0). Again, for concreteness we focus our attention on a particular subclass of
solutions parametrised by a single scalar parameter α ≥ 0:

u0 =
√

2α1d, v0 = 0 (3.29)

In this case, the integral of motion is given by:

I(u0,v0) = α21d (3.30)

10

A simple asymptotic expansion allow us to see how the potential φα ≡ φα21d looks like when α is
small or large:

φα(θ) �
α→0+

log(1/α) · ||θ||1, φα(θ) �
α→∞

1

4α2
||θ||22. (3.31)

In other words, α continuously interpolate φα between the `1 and the `2 norm! See fig. 5 for a contour
plot of φα at different values of α. Consequently, from eq. (3.28) it can be shown that the solution
θ∞(α) will inherit a similar implicit bias:

θ∞(α) →
α→0+

arg min
θ∈I

||θ||1, θ∞(α) →
α→∞

arg min
θ∈I

||θ||2 (3.32)

4! Proving this result requires showing uniform convergence of φα as α→ 0/∞ on a compact of Rd
and that θ∞(α) is bounded for all α ≥ 0. A detailed proof can be found in Proposition 6 of Pesme
(2024).

Remark 3 (Relationship to lazy training). Recall from Lecture 4 our discussion on how the scale of
initialisation determines whether our network behaves as a kernel method or whether it learn features.
Kernel methods are just linear models on Hilbert space, and therefore the implicit bias of GF/GF/SGD
for kernels is the same as least-squares, which for vanishing initialisation θ0 = 0 is the minimum-`2
norm. Indeed, this is coherent with the α→∞ limit of our diagonal linear network.

Interestingly, this analogy also hold in the opposite, α→ 0+ limit. Indeed, this limit is akin to the
mean-field limit discussed in Lectures 3 & 4, where the wide network can be seen as an integral over
a limiting probability measure over the hidden units. The implicit bias of gradient flow on the square
loss corresponds in this case to the minimum Barron norm interpolator, which is akin to a `1-penalty
on the weights.

Remark 4 (Relation to generalisation). It is important to stress that, whether `1, `2 or in between,
the implicit regularisation above is a property of the architecture and training algorithm, and hence
is independent of generalisation. Indeed, we have made no assumption on the data distribution,
and whether a particular regularisation is “good” in terms of generalisation will crucially depend on
the properties of the target function. For instance, if the underlying predictor is a linear function
yi = 〈θ?,xi〉 + εi with sparse weights ||θ?||0 � d, we expect the minimum-`1 norm predictor to
generalise better than the minimum-`2 norm predictor. But the converse can be true if ||θ?||22 = d
instead.

4 To go further

4.1 Benefits of noise

As we discussed in section 2.3, in the OLS problem the implicit bias is the same whether we use
gradient flow, GD or SGD — a consequence of the fact that in these three algorithms problems the
gradient lives in the span of the covariates. Interestingly, the situation is very different for linear
diagonal neural networks. As shown in (Pesme et al., 2021), adding a stochastic term to gradient flow
leads to an algorithm with similar potential, but with an effective initialisation scale αsgf < αrmgf .
This implies that for a fixed choice of initialisation scale α, these two algorithms will converge to
different interpolators with different implicit biases — a situation closer to fig. 1. In particular, since
αsgf < αrmgf , θsgf∞ will tend to be sparser than θgf∞. The role of the step-size (which quantifies the
difference between GF and GD) has also been studied in (Nacson et al., 2022).

11

4.2 Implicit bias in binary classification

Our discussion in this lecture has focused on results for the square loss function. There is a similar
line of work characterising the implicit bias of algorithms for for binary classification with the logistic
loss. Soudry et al. (2018) has shown that, when data is linearly separable (hence interpolators exist),
GD or SGD for logistic regression converge to the minimum margin interpolator, independently of the
initial condition.

References

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and sgd
can reach them. Advances in Neural Information Processing Systems, 33:8543–8552, 2020.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning,
pages 16270–16295. PMLR, 2022.

Scott Pesme. Deep Learning Theory Through the Lens of Diagonal Linear Networks. PhD thesis,
Lausanne, 2024. URL https://infoscience.epfl.ch/handle/20.500.14299/208225.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal linear
networks: a provable benefit of stochasticity. Advances in Neural Information Processing Systems,
34:29218–29230, 2021.

Loucas Pillaud-Vivien and Scott Pesme. Rethinking sgd’s noise - ii: Implicit bias, Sep 2022. URL
https://francisbach.com/implicit-bias-sgd/.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Con-
ference on Learning Theory, pages 3635–3673. PMLR, 2020.

12

https://infoscience.epfl.ch/handle/20.500.14299/208225
https://francisbach.com/implicit-bias-sgd/

	Motivation
	Implicit bias in least-squares regression
	Recap of OLS
	Implicit bias of gradient flow
	Other descent algorithms

	Implicit bias of diagonal linear networks
	Properties of the landscape
	The implicit bias of gradient flow

	To go further
	Benefits of noise
	Implicit bias in binary classification

