
Homework Week 1

Mathematics of deep learning
IASD 2026

Lecturer: Bruno Loureiro, bruno.loureiro@di.ens.fr

Instructions: This homework is due on Monday 26/01/2026. Please upload your solutions
in a PDF file named HW1 Nom Prenom.pdf here. Formats accepted: PDF (LaTeX or
a readable scan of handwritten solutions).

Exercise 1. Concentration inequalities

(a) (Markov’s inequality) Let X ≥ 0 denote a non-negative random variable. Show thar, for
any t > 0:

P(X ≥ t) ≤ E[X]

t
(1)

(b) (Chernoff’s bound) Let X ≥ 0 be a real random variable. Using Markov’s inequality, show
that for all C ∈ R and t > 0:

P(X ≥ c) ≤ E
[
etX
]
e−ct (2)

Give an example of a probability distribution which has exponential tails.

(c) (Hoeffding’s inequality) Let X1, . . . , Xn denote n i.i.d. bounded random variables such
that E[Xi] = 0 and |X| ≤ C. Using Chernoff’s inequality and Hoeffding’s lemma 1, show
that for all t > 0:

P

(
n∑

i=1

Xi ≥ t

)
≤ e−

t2

2nC2 (3)

Give an example of a probability distribution that has two-sided exponential tails. How
is this result related to the CLT?

Note: We say a random variable X has (right) exponential tail with rate λ > 0 if there
exists c ∈ R such that:

lim
t→∞

e−λtP(X > t) = c (4)

Similarly, we say a random variable has two-sided exponential tails if:

lim
t→∞

e−λtP(|X| > t) = c (5)

Note that this is equivalent to saying that for large enough t, the tails are exponential:

P (X > t) ∼ ce−λt (6)

Lemma 1 (Hoeffding’s lemma). Let X ∈ [a, b] be a bounded random variable. Then, for all
t > 0:

E
[
et(X−E[X])

]
≤ e

t2(a−b)2

8 (7)
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Exercise 2.
Consider a supervised learning problem with training data D = {(xi, yi) ∈ X × Y : i ∈ [n]}

that we assume is sampled i.i.d. from a distribution p. Let H = {fθ : X → Y : θ ∈ Θ} denote a
parametric hypothesis class, and ℓ : Y ×Y → R+ a loss function, which we assume is uniformly
bounded by a constant B > 0.

(a) Which loss functions we discussed in class satisfy this assumption and which do not?

(b) Write down the definition of the population R(θ) and empirical R̂(θ;D) risks.

(c) Using Hoeffding’s inequality in eq. (3), show that for any fixed θ ∈ Θ and all δ ∈ (0, 1),
with probability at least 1− δ:

|R(θ)− R̂(θ;D)| ≤ B

√
log 2/δ

2n
(8)

(d) What are the consequences of this upper bound on the number of samples required in
order to achieve a small generalisation gap ϵ > 0?
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