
Mathematics of Deep Learning

Lecture 2 & 3: Curse of dimensionality & Approximation theory

Bruno Loureiro

Département d’Informatique, École Normale Supérieure - PSL & CNRS, France

17/01/2025 - 24/01/2025

Typos, comments or suggestions? Get in touch at: bruno.loureiro@di.ens.fr

1 The curse of dimensionality

Some of the key challenges in machine learning theory arise from the fact that the data and the
functions we want to learn live in high-dimensional spaces, such as Rd with d� 1. Think for instance
of one of the simplest classification problems, MNIST, given by n = 60000i mages of black and white
digits with 28× 28 pixels. When vectorised, this gives a data matrix in R60000×728!

The term curse of dimensionality was introduced by the Richard E. Bellman, pioneer of dynamical
programming, to refer to the hindrance of doing computer science in high-dimensional spaces. We now
discuss some examples that illustrate this, and why high-dimensonality does not always make things
harder, but sometimes also easier.

1.1 k-Nearest neighbours

Consider two vectors sampled uniformly from the hypercube x,x ∼ Unif([0, 1]d). What is their
expected Euclidean distance?

E[||x− x′||22] =
d∑

k=1

E[(xk − x′k)2] = d E[(U − U ′)2]

= 2s
(
E[U2]︸ ︷︷ ︸

1/3

−E[U]2︸ ︷︷ ︸
1/22

)
=
d

6
(1.1)

On the other hand, the variance of the distance is given by:

Var[||x− x′||22] = d Var[(U − U ′)2] =
7d

180
(1.2)

Therefore, the ratio between the typical fluctuation of the distance (given by the standard deviation)
and its expected value is given by:

Std[||x− x′||22]

E[||x− x′||22]
= O

(
1√
d

)
(1.3)

This means that in the high-dimensional limit d → ∞, the distance between two uniformly sampled
points grows much faster than its fluctuations. Why is this a potential a problem?

Let’s consider a supervised regression task with training data D = {(xi, yi) ∈ Rd+1 : i ∈ [n]} drawn
i.i.d. from a model:

yi = f?(xi) + εi, xi ∼ Unif([0, 1]d) (1.4)

1

mailto:brloureiro@gmail.com
https://en.wikipedia.org/wiki/Richard_E._Bellman

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Data
k-NN Approximation (k=5)
sin(2 x) (True Function)

Figure 1: Approximating f?(x) = cos(2πx) with the 5-NN algorithm. Here, we draw n = 100 points
from yi = f?(x) + ε with xi ∼ Unif([0, 1]) and εi ∼ N (0, 0.2).

where f? : [0, 1]d → R is a regular function (e.g. Lipschitz) and εi independent from xi and have
zero mean. Consider one the first algorithms we learn in the machine learning course: the k-Nearest
Neighbours (kNN) algorithm, consisting of estimating the label of a point x by taking an average over
the labels of all its k closest neighbours in Euclidean norm:

f(x) =
1

k

∑
i: k smallest ||x−xi||22

yi (1.5)

For regular target functions f? in d = 1, this works very well, see fig. 3 for an example. What about
for general d > 1? In order for eq. (1.5) to be meaningful, for every x ∈ [0, 1]d we need to have at
least one training sample xi nearby. However, in high-dimensions this is not simple: as we have seen
in eq. (1.3) the distance between uniformly sampled points grows in d. How many training points n
we then need in order to have at least one xi at distance 1 to an arbitrary x ∈ [0, 1]d?

Let any x0 ∈ [0, 1]d consider the set of points at distance at least r > 0 from x0:

Br(x0, r) := {x ∈ Rd : ||x− x0||2 ≤ r} (1.6)

Asking for having at least one training point xi distance 1 from any point in the hypercube x ∈ [0, 1]d

is equivalent:

[0, 1]d ⊂
n⋃
i=1

Bd(xi, 1) (1.7)

Taking the volume on both sides, we must have:

Vol([0, 1]d) ≤ Vol

(
n⋃
i=1

Bd(xi, 1)

)
≤ nVol (Bd(0, 1)) (1.8)

However, since:

Vol (Bd(0, r)) =
πd/2

Γ(d/2 + 1)
rd � (

2πer2

d
)
d/2(dπ)−

1/2 = O(d−
d/2− 1

2), as d→∞ (1.9)

while Vol([0, 1]d) = 1, we have:

1 ≤ n πd/2

Γ(d/2 + 1)
rd ⇔ n ≥ O(d

d/2+1/2) as d→∞ (1.10)

In other words: to get a meaningful estimation with the kNN estimator, we need exponential data in
d!

2

1.2 Grids in high-dimensions

As we will see in section 2, many of the classical approximation results in analysis involve approximat-
ing a function uniformly on a compact subset of [0, 1]d ⊂ Rd. A very common proof scheme consists
of partitioning [0, 1]d in a uniform grid of constant size and approximating the target function by a
piecewise constant function at each element of the grid. In dimension d = 1, it is easy to see we need
N = d1/δe points to do it. In dimension 2, we need N = d1/δe2. More generally, in dimension d we will
need N = d1/δed points. Therefore, the finer we want the partition to be, the more points we need,
scaling exponentially in the dimension.

0 1δ

0 1

1

0 1

1

1

Figure 2: Partition of [0, 1]d in a uniform grid of size δ = 0.2 for d ∈ {1, 2, 3}

1.3 The empirical covariance is not reliable

The curse of dimensionality also plagues many of the statistical procedures we are used. For instance,
consider the problem of estimating the covariance of data x1, . . . ,xn ∈ Rd samples i.i.d. from a
distribution. The maximum likelihood estimator in this case is given by the empirical covariance
matrix:

Σ̂n :=
1

n

n∑
i=1

xix
>
i (1.11)

where we assumed for simplicity data is centred. If d = O(1) is fixed, by the law of large numbers we
have:

Σ̂n
a.s.−−→ Σ as n→∞ (1.12)

where Σ = E[xx>] is the population covariance of the data. But what happens when d is also large?
For instance, when n = Θ(d)? As we will see in Lecture 4, in this limit the matrix Σ̂n can have a
very different behaviour. Let’s consider a concrete example: take xi ∼ N (0, Id) i.i.d. and consider
the question: how far are the eigenvalues of Σ̂n from 1 (the eigenvalues of Σ = Id)? In eq. (3.3) we
show a histogram of the eigenvalues of Σ̂n when d = 500 and n = 1000. Even though the expected
eigenvalue is one, most of the eigenvalues are closer to zero. This has important consequences for
learning. For instance, if we consider the PCA problem where the goal is to estimate the directions
of the data with largest variance, a naive look at the the spectrum of Σ̂n will suggest that most of
directions have small variance, which can lead to the misleading conclusion that data is effectively
low-dimensional — while the true data distribution is actually isotropic in Rd

1.4 Blessings of dimensionality

While learning in high-dimensional spaces certainly come with its challenges, it also comes with
benefits, known as the blessings of dimensionality — a terminology coined by statistician David

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Eigenvalue

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Eigenvalue density
Marchenko-Pastur law

Figure 3: Histogram of eigenvalues of the empirical covariance matrix Σ̂n of i.i.d. covariates xi ∼
N (0, Id) with d = 500 and n = 1000.

Donoho in his AMS math challenges lecture (Donoho et al., 2000). The most notable one is the
phenomenon of concentration of measure, where the statistical fluctuations of some random quantities
of interest get suppressed in high-dimensions.

The most well known example of this is the thin-shell phenomena for random Gaussian vector:
the property that in dimension Rd, random Gaussian points tightly cluster around the hypersphere.

Proposition 1 (Thin-shell). Let x ∼ N (0, Id) denote a random Gaussian vector. Then, for every
ε > 0, there exists C > 0 such that:

P
(

(1− ε)
√
d ≤ ||x||2 ≤ (1 + ε)

√
d
)
≥ 1− e−C(ε)d (1.13)

Or in words: with high-probability x is close to Sd−1(
√
d).

The proof of this result follows from Berstein’s inequality applied to ||x||2− d, a sum of zero mean
sub-exponential random variables. See fig. 4 for an illustration. This can have important consequences
for computer science.

Theorem 1 (Johnson-Lenderstrauss lemma, 1984). Let x1, . . . ,xn ∈ Rd. Then, for any i, j ∈ [n] and
any desired precision ε > 0, there exists a linear map T : Rd → Rk with k ≤ C log n such that:

(1− ε)||xi − xj ||2 ≤ ||T (xi)− T (xj)||2 ≤ (1 + ε)||xi − xj ||2 (1.14)

In other words: T is an approximate isometry.

Although we will not discuss it here, the proof of this theorem is given by taking a Gaussian
random mapping and using Gaussian concentration of the norm to show the isotropy property. We
refer the interested reader to (Vershynin, 2018) for a proof. This result is striking, since it tell us that
any learning algorithm with d � n that depends only on the pairwise distances of the data (a.k.a.
data Gram matrix) can be substantially reduced in computational cost. For instance, if n = 103 and
d = 104, we have k ∼ 10!

4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Dimension d=1
Mean = 1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

Dimension d=10
Mean = 1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Norm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

Dimension d=50
Mean = 1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Norm

0

1

2

3

4

5

De
ns

ity

Dimension d=100
Mean = 1.00

Figure 4: Histogram of the norm ||xi||22 of i ∈ [103] Gaussian vectors xi ∼ N (0, 1/dId) for increasing
d ∈ {1, 10, 50, 100}.

2 Universal approximation of neural networks

2.1 Motivation & Introduction

Last lecture we have seen that we can decompose the excess risk in two terms:

R(θ̂)−R? =

{
R(θ̂)− inf

θ∈Θ
R(θ)

}
︸ ︷︷ ︸

estimation

+

{
inf
θ∈Θ

R(θ)−R?
}

︸ ︷︷ ︸
approximation

. (2.1)

Our focus in today’s lecture is about the second term, the approximation error, which quantifies the
capacity of the hypothesis H = {fθ : Rd → Y : θ ∈ Θ} in expressing the Bayes predictor. This term is
only a function of the choice of architecture and the underlying data distribution, and is independent
of the training data. It can also be thought as the irreducible error in the best case scenario where we
have infinite amount of data and are able to perfectly optimise the risk.

2.2 Introduction to approximation theory

An approximation problem is composed of two ingredients:

1. A target class of functions one wishes to approximate.

2. A metric that defines how good the approximation is.

In eq. (2.1), we wish to approximate the Bayes predictor f?. However, the Bayes predictor is implicitly
a function of the data distribution and the loss function, and its properties will be problem dependent.
Instead of focusing of a particular case, classical approximation theory take as a gold standard the
class of continuous functions C, which is often rich enough for machine learning.

The second point depends on the loss function. For instance, a regression problem with the
squared-loss will have low excess risk if:

||f? − fθ||L2(µ) := Ex[(f?(x)− fθ(x))2] (2.2)

5

is small, where we denoted by µ is the marginal distribution over the covariates x ∈ Rd. Therefore,
the L2(µ) error a good enough measure when one wants to benchmark the generalisation error of a
network trained by ERM with the square loss, for example. In other cases, other norms might be more
adapted. Consider for instance the problem of binary classification with a L-Lipschitz margin-based
loss function `(yfθ(x)) (e.g. logistic or hinge). Then:

E[`(yfθ(x))− `(yf?(x))] ≤ L E[|fθ(x)− f?(x)|] := ||fθ − f?||L1(µ) (2.3)

which is the L1(µ) norm. This is a weaker notion that before, since L2(µ) ⊂ L1(µ). More generally,
we have that || · ||p is an increasing function of p ∈ [1,∞] (Exercise 1), and therefore the norm giving
the strongest guarantees is L∞(µ), also known in this context as the uniform norm. More frequently,
results are proven in terms of the uniform norm over a compact set K ⊂ Rd:

||f ||L∞(K) = sup
x∈K
|f(x)| (2.4)

for example, K = [0, 1]d — and this will be the focus of our discussion in this lecture.

4! When supp(µ) ⊂ K, we have ||f ||L∞(µ) ≥ ||f ||L∞(K), but in general these are different
notions (Exercise 2). Overall, focusing on || · ||L∞(K) allow to have results which are independent of
the covariate distribution, but which are not adapted to a problem of interest. Indeed, as we will
going to see later, these guarantees tend to be pessimistic.

Example 1 (Uniform vs. non-uniform). To get an intuition for uniform vs. non-uniform guarantees,
let’s consider a simple but instructive example on [0, 1] ⊂ R. Let g(x) = 0 for all x ∈ [0, 1] and define:

fn(x) =

{
1 x ∈ [1, 1/n]

0 otherwise
(2.5)

Then, we have:

||g − fn||L1([0,1]) =

∫ 1

0
|fn(x)|dx =

1

n
(2.6)

and hence, for any ε > 0, taking n > d1/εe we can approximate g in L1 to precision ε. More generally,
for any p ≥ 1 we have:

||g − fn||Lp([0,1]) =

(∫ 1

0
|fn(x)|pdx

)1/p

=
1

n1/p
(2.7)

and therefore getting a Lp guarantee to precision ε requires larger n > O(ε−p). Indeed, in uniform
norm:

||g − fn||L∞([0,1]) = 1 (2.8)

for all n ∈ N.

This motivates the following definition:

Definition 1 (Universal approximator). Let K ⊂ Rd denote a compact subset. We say a class of
functions H is a universal approximator over K if for any continuous function g ∈ C(K) and any ε > 0,
there exists f ∈ H such that:

|f(x)− g(x)| ≤ ε, ∀x ∈ K (2.9)

Remark 1. Two comments are in order:

6

• Equation (2.9) can be equivalently rewritten to to:

sup
g∈C(K)

inf
f∈H
||f − g||L∞(K) < ε (2.10)

• Most of the proofs that follow will consider K = [0, 1]d. This is without loss of generality since
we can always cover a compact by a cube and then apply a rescaling.

• Restricting to a compact set K is crucial though. See exercise 4 for one example.

You might remember from your analysis course the following result:

Theorem 2 (Weierstrass theorem, 1885). Polynomials with unbounded degree are universal approx-
imators, i.e. for every continuous real-valued function f : [a, b] → R and for every ε > 0, there exists
a polynomial p such that:

sup
x∈[a,b]

|f(x)− p(x)| ≤ ε (2.11)

Remark 2. Sometimes, this is also stated as “polynomials are dense in C(K).

Actually, polynomials are just a particular case of one of the central results in approximation
theory:

Theorem 3 (Stone-Weierstrass). Let K ⊂ Rd denote a compact subset and H a class of functions
f : K → R satisfying the following properties:

• Continuity: Every f ∈ H is continuous, i.e. H ⊂ C(K).

• Non-zero element: For all x ∈ K, there exists f ∈ H such that f(x) 6= 0. This is sometimes
also stated as H containing the constant functions.

• Separability: For all x,x′ ∈ K, there exists a f ∈ H such that f(x) 6= f(x′).

• Closure: H is a sub-algebra of C(K).1

Then, H is a universal approximator over K.

Remark 3 (Curse of dimensionality). We will not prove this result in the lectures. However, it is
worth highlighting that a constructive proof of this result, due to Sergei Berstein in 1912 , involves
approximating g by a suitable choice of polynomials (known as Bernstein polynomials) on a grid.
Therefore, as a consequence of the discussion in Section 1.2, results derived as a consequence of the
Stone-Weierstrass theorem 3 typically suffer from the curse of dimensionality, i.e. the number of grid
points needed to cover [0, 1]d with intervals of size ε scale with O(ε−d).

It is easy to derive theorem 2 from the Stone-Weierstrass theorem by checking that the algebra
generated by the coordinates x1, · · · , xd plus contants separates points. More generally, this provides
a powerful way of proving that a given class of functions are universal approximators.

3 Neural networks

We now move to the main subject of this lecture: neural networks. A L-layer fully connected neural
network is a parametric function of the type:

fθ(x) = σL (WLσL−1 (· · ·W2σ1 (W1x+ b1) + b2 · · ·) + bL) (3.1)

where:
1In other words, it is closed under vector space operations and point-wise multiplication.

7

https://en.wikipedia.org/wiki/Bernstein_polynomial

input
layer

hidden layer

output
layer

Figure 5: (Left) Fully connected neural network of depth L = 4, hidden-layer widths p` = 5 for ` ∈ [4]
and p5 = 4 in d = 4. (Right) Popular activation functions used in neural networks.

• The parameters W` ∈ Rp`+1×p` , ` ∈ [L] are known as the weight matrices and b` ∈ Rp` as the
biases,2 and are the trainable parameters of the model θ = (W`, b`)`∈[L].

• The non-linear functions σ` : R → R are known as the activation functions. Some of the most
common examples, which act component-wise on vectors, are illustrated in fig. 5 (right). More
general examples with are vector valued are the softmax and the max-pooling activations.

• L is known as the depth of the network, and p`+1 as the width of the layer ` ∈ [L].

• The first and last layers are known as the input and output layers, while the middle layers are
known as the hidden layers.

See fig. 5 (left) for an illustration.

4! Fully connected networks are one of many classes of neural network architectures, such as
convolutional networks, U -networks, transformers, etc. In this lecture, we focus on the fully connected
case for simplicity.

A particular case of interest in these lectures will be two-layer neural networks (L = 2) with
real-valued outputs:

fθ(x) = 〈a, σ(Wx)〉 =

p∑
j=1

ajσ(〈wj ,x+ bj〉). (3.2)

where for convenience we relabelled a := W2 ∈ Rp to stress that the last-layer is a vector. Since it
will play an important role in what follows, we will denote the class of two-layer neural networks over
Rd with activation function σ as:

Fσ,d,p :=
{
fθ : Rd → R : fθ(x) =

p∑
j=1

ajσ(〈wj , x〉+ bj)
}

(3.3)

Fσ,d :=

∞⋃
p=0

Fσ,d,p (3.4)

Our goal in what follows is to study the approximation properties of fully-connected networks. On a
high-level, we will show that two-layer neural networks with unbounded width are universal approx-
imators in the sense of definition 1. Ideally, we would like to show not only that it is possible to
approximate a given class of functions with a neural networks, but also to estimate how many neurons
are needed. However, such quantitative results are harder to show.

2The name “bias” is quite misleading, and should in no way be mistaken for the standard notion of bias in statistics.

8

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

g(
x)

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

(x
)

Step Function: 1(x 0)
(x) = (1 + e x) 1

(x) = 1
2 (1 + erf(x))

(x) = 1
2 (1 + tanh(x))

(x) = (x + 1
2)+ (x 1

2)+

Figure 6: (Left) Approximating g(x) = sin(2πx) with a two-layer neural network with step-function
activation to precision ε = 0.5. The function g is 2π-Lipschitz in [0, 1], and hence we have p = 13.
(Right) Different activation functions which are close to the step-function 1(x ≥ 0).

3.1 Uniform results on R

We start our discussion by considering d = 1.

Proposition 2. Any L-Lipschitz function on [0, 1] can be ε-approximated by a two-layer neural
network of width dL/εe and step-function activation σ(x) = 1x≥0(x).

Proof. First, note that we can create a top-hat function of height 1 in an interval [a, b] by combining
two step-functions:

1(x ≥ a)− 1(x ≥ b) = 1(x ∈ [a, b]) (3.5)

Pictorially, it is easy to see that we can approximate any regular g with top-hat functions, see fig. 6
(left). The proof essentially follows this intuition. The idea is to partition [0, 1] in p intervals of equal
size δx and approximate g in each of these intervals by a top-hat function with height given by how
much the function varies. The only tricky part is figuring out the good interval size to obtain the
desired precision, which should depend on the regularity of the function.

Consider a L-Lipschitz function g : [0, 1] → R. Given a precision ε > 0, let p = dL/εe, and define
the two-layer neural network of width p:

fθ(x) =

p−1∑
j=0

aj1(x− bj ≥ 0) (3.6)

where:

bj =
jε

L
, j ∈ {0, 1, . . . , p− 1} (3.7)

aj =

{
g(0) j = 1

g(bj)− g(bj−1) j > 1.
(3.8)

From eq. (3.5), this is equivalent to:

fθ(x) =

p−1∑
j=0

g(bj)1(x ∈ [bj , bj+1]) (3.9)

It is easy to check that this does the job. Indeed, for any x ∈ [0, 1], define:

k = max{j ∈ {0, 1, · · · , p− 1} : bj ≤ x} (3.10)

9

such that x ∈ [bk, bk+1] and f(x) = f(bk) is constant in this interval. Therefore:

|g(x)− f(x)| = |g(x)− g(bk) + g(bk)− fθ(bk)|
≤ |g(x)− g(bk)|+ |g(bk)− fθ(xk)|+ |fθ(bk)− fθ(x)|

≤ L|x− bk|+

∣∣∣∣∣∣g(bk)−
k∑
j=0

aj

∣∣∣∣∣∣+ 0

≤ L ε
L

+

∣∣∣∣∣∣g(bk)− g(b0)−
k∑
j=1

(g(bj)− g(bj−1))

∣∣∣∣∣∣
≤ ε (3.11)

Since the above was for arbitrary x ∈ [0, 1], it implies the uniform bound.

Remark 4. The construction in the proof of proposition 2 is suboptimal, since the grid size is adapted
only to the global regularity of g in [0, 1], not to its local regularity. Indeed, we pay a high price for
very regular regions of g, such as flat regions. See exercise 3 for a more detailed discussion of this
point.

Since sigmoid-like activation functions such as σ(x) = (1 + e−x), σ(x) = 1/2(1 + erf(x)), σ(x) =
1/2(1 + tanh(x)) or even the sum of relu activations σ(x) = relu(x+ δ)− relu(x− δ) (see fig. 6 (right)
for an illustration), it is intuitive that eq. (3.5) can be generalised to those cases.

Proposition 3. Every L-Lipschitz function g : R → R can be ε-approximated by a two layer neural
network of width p = O(L/ε) with sigmoid-like activation σ:

lim
x→−∞

σ(x) = 0, lim
x→∞

σ(x) = 1 (3.12)

Sketch of the proof. Note that to show this result, from eq. (3.5) it suffices to show that we can
approximate the step function 1(x ≥ t) with sigmoid-like functions in L∞ over an interval. The tricky
part is that a single sigmoid will not do the job. Indeed, away from the discontinuity x 6= t we can
approximate 1(x ≥ t) by rescaling σα(x) = σ(α(t − x)) with sufficiently large α. However, at the
discontinuity x = t, the sup norm will be constant. To approximate the jump itself, we have to take
two sigmoids with a small shift δ > 0:

φα,δ(x) = σ(α(t− (x− δ/2)))− σ(α(x− (t+ δ/2))) (3.13)

For x /∈ [t − δ/2, t + δ/2] and large α, the two terms are equal so the difference is zero, while for
x ∈ [t− δ/2, t+ δ/2] the difference is close to 1 at large α. This is an approximation to the box function
in an interval, and allow us to provide localised increments, see fig. 7 for an illustration.

3.2 Uniform results on Rd

We now move to Rd with d > 1. Note that the proof of proposition 2 can be decomposed in two steps:
first, we showed that two-layer neural neural networks with step-function activation can express the
top-hat function in an interval, i.e. eq. (3.5). Then, we showed that we can approximate any continuous
function by a combination of piece-wise constant functions, which is precisely a linear combination of
top-hats. The second part of this construction is easy to generalise to d > 1.

10

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

va
lu

e

= 1
= 5
= 20
= 100

1(x [0.5, 0.5])

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 sin(2 x)
Sigmoid approximation

Figure 7: (Left) Approximating the box function 1(x ∈ [−1/2, 1/2]) with the difference of two scaled
sigmoids. (Right) Approximating the sign function sin(2πx) with a sum of p = 20 sigmoid functions.

Proposition 4. Let g : Rd → R denote a continuous function and ε > 0 a desired precision. Then,
there exists a partition P = (R1, · · · , RN) of [0, 1]d into N = dδ−de rectangles with side length δ > 0
and real numbers aj ∈ R, j ∈ [N] such that:

sup
x∈[0,1]d

∣∣∣∣∣∣g(x)−
N∑
j=1

aj1(x ∈ Rj)

∣∣∣∣∣∣ < ε (3.14)

In other words: linear combinations of indicator functions are universal approximators over [0, 1]d.

Proof. Let P = (R1, · · · , RN) of [0, 1]d denote a partition of [0, 1]d into N rectangles with side length
smaller than δ > 0. Note that since each rectangle has volume δd, this requires N = dδ−de rectangles.
What we need to show is that we can choose δ and aj such that eq. (3.14) holds. For every rectangle
Rj , take an arbitrary point xj ∈ Rj and let:

aj = g(xj) (3.15)

be the corresponding height of the top-hat function. Then:

sup
x∈[0,1]d

|g(x)− f(x)| = sup
j∈[N]

sup
x∈Rj
|f(x)− g(x)| (3.16)

≤ sup
j∈[N]

sup
x∈Rj

{
|g(x)− g(xi)|+ |g(xi)− f(x)|︸ ︷︷ ︸

=0

}
(3.17)

= sup
j∈[N]

sup
x∈Rj
|g(x)− g(xi)| (3.18)

Since g is continuous on Rd, it is uniformly continuous on the compact set [0, 1]d, and therefore for
every ε > 0, there exists δ > 0 such that:

||x− x′||∞ ≤ δ ⇒ |g(x)− g(x′)| ≤ ε (3.19)

Therefore, choosing the size of our rectangle to be such δ, we have:

sup
x∈[0,1]d

|g(x)− f(x)| ≤ ε. (3.20)

Remark 5 (Curse of dimensionality, again). As we had already seen in Section 1.2, the number of
indicator function required to approximate g scale exponentially in the dimension N ∼ δ−d, which is
an instance of the curse of dimensionality.

11

To establish a similar result to proposition 2, we now need to approximate the indicator function
over the rectangles 1(Rj) with a neural network. The first proof of this result in the two-layer case is
due to Cybenko (1989) with sigmoid functions and a slightly different argument. Here, we will present
the proof by Hornik et al. (1989) which is based on the Stone-Weierstrass theorem 3.

Theorem 4 (Hornik, Stinchcombe, White 1989). The class of two-layer neural networks with un-
bounded width and sigmoid-like activation function σ:

• σ is increasing.

• lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.

Are universal approximators over [0, 1]d. In other words, for any continuous function g : Rd → R,
there exists a two-layer neural network f ∈ Fσ,d such that for any ε > 0:

sup
x∈[0,1]d

|g(x)− f(x)| ≤ ε (3.21)

The proof of theorem 4 proceeds in two steps: first, we will use the Stone-Weierstrass theorem to
prove that two-layer networks with σ(x) = cos(x) are universal approximators. Then, we will prove
that we can approximate the cosine with any activation satisfying the properties above.

Lemma 1. Two layer neural networks of unbounded width with cosine activation are universal ap-
proximators.

Proof. In order to apply the Stone-Weierstrass theorem, we need to check that the class of two-layer
networks:

Fcos,d =
⋃
p≥1

{
fθ(x) =

p∑
j=1

aj cos(〈wj ,x〉+ bj)
}

(3.22)

satisfy the conditions of theorem 3:

• Contituity: Elements of Fcos,d,p are continuous since they are linear combinations of continuous
functions (cos(x)).

• Non-zero element: For all x ∈ [0, 1]d, 1 ∈ Fcos,d since cos(〈0,x〉) = 0.

• Separability: For any x,x′ ∈ [0, 1]d, there exists aw ∈ Rd such that cos(〈w,x〉) 6= cos(〈w,x′〉).
Take for instance:

f(z) = cos

(
〈(z − x′), (x− x′)〉
||x− x′||22

)
(3.23)

which satisfies f(x) = 1 and f(x′) = 0.

• Closure: Fcos,d is clearly closed under addition and multiplication by a real. It is also closed
under multiplication since:

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) (3.24)

12

Therefore, for any f, h ∈ Fcos,d:

f(x)h(x) =

 p∑
j=1

aj cos(〈wj ,x〉+ bj)

 p′∑
k=1

cj cos(〈uj ,x〉+ dj)


=

p∑
j=1

p′∑
k=1

ajck cos(〈wj ,x〉+ bj) cos(〈uj ,x〉+ dj)

=
1

2

p∑
j=1

p′∑
k=1

ajck [cos (〈wj + uk,x〉+ bk + ck) + cos (〈wj − uk,x〉+ bk − ck)] (3.25)

which implies fh ∈ Fcos,d.

Therefore, by the Stone-Weierstrass theorem 3, two-layer neural networks with cosine activation are
universal approximators over [0, 1]d.

Remark 6. As you will show in exercise 5, the activation σ(x) = exp(x) also satisfy the conditions
of the Stone-Weierstrass theorem.

We now move to the proof of the general case.

Sketch of the proof. Thanks to theorem 4, for any continuous function g : Rd → R, there exists a
two-layer neural network of width p with cosine activation:

f(x) =

p∑
j=1

ãj cos
(
〈w̃j ,x〉+ b̃j

)
(3.26)

such that:

sup
x∈[0,1]d

|g(x)− f(x)| ≤ ε

2
(3.27)

Therefore, our goal is to approximate f(x) by a two-layer neural network with sigmoid-like activation.
First, note that for any x ∈ [0, 1]d, the pre-activations are bounded:

tj = 〈w̃j ,x〉+ b̃j ∈ [|b̃j |, |〈w̃j ,1〉|+ |b̃j |] (3.28)

Therefore, we can focus on the univariate problem of approximating cos(x) on a compact interval with
a sigmoid two-layer neural network, which we saw can be done with proposition 3.

Remark 7. The most general universal approximation result for two-layer neural networks, proven
by Leshno et al. (1993), shows that Fσ,d with σ a locally bounded piece-wise continuous activation is
a universal approximator if and only if σ is not a polynomial.

4 Quantitative L2 results

So far, we have discussed only uniform approximation results. Although they are general and strong,
they do not provide quantitative rates, such as an estimate of how fast the error goes down with the
width. Moreover, as we saw these results suffer from the curse of dimensionality. This is a fundamental
trade-off due to the fact that we consider a very broad class of functions (continuous functions) and
require a strong guarantee (L∞, uniform norm).

Getting quantitative approximation rates require making more precise assumptions. In this section,
we discuss a celebrated result from Andrew Barron in this direction, where the key idea is to explore

13

further the regularity of the functions (Barron, 1993). A trivial but instructive example of how
regularity can help is given by differentiable functions f : R→ R with f(0) = 0. By the fundamental
theorem of calculus, we can write:

f(x) = f(0) +

∫ x

0
f ′(t)dt =

∫ 1

0
1(x ≥ t)g′(t)dt (4.1)

When discretised, this is precisely a two-layer neural network with step-function activation that we
discussed in proposition 2! Moreover, the discretisation error scales as O(1/√p) in L2([0, 1]) norm.
Barron’s construction can be seen as a sophisticated version of this simple example.

4.1 Infinite width limit of two-layer networks

Consider the two-layer neural network eq. (3.2):

fθ(x) =
1

p

p∑
j=1

ajσ(〈wj ,x〉+ bj) (4.2)

where, without loss of generality, we have rescaled aj 7→ aj/p. Introducing the following empirical
measure over the network parameters:

µ̂p =
1

p

p∑
j=1

δθj =
1

p

p∑
j=1

δ(aj ,wj ,bj) (4.3)

we can rewrite eq. (4.2) as an integral over µ̂p:

fθ(x) =

∫
Ω
aσ(〈w,x〉+ b)µ̂p(da,dw,db) (4.4)

with Ω = R× Rd × R.

Remark 8. This construction only requires an empirical sum structure, and therefore we could write
a similar expression for any map ϕ(x, θ), with the ridge function ϕ(x, θ) = aσ(〈w,x〉 + b) being a
particular example with θ = (a,w, b) ∈ Ω:

fθ(x) =

∫
Ω
ϕ(x; θ)µ̂p(dθ) (4.5)

Informally, we expect that when the width is large p � 1, µ̂p to be close (in a weak sense) to a
limiting measure µ over Ω. In other words: a finite width network can be seen as a discretisation of
an infinite width network:

fθ(x) =

∫
Ω
ϕ(x; θ)µ(dθ) (4.6)

The key idea of Barron’s construction is to show that a class of sufficiently regular functions (to be
defined next) can be written in the form eq. (4.6), and therefore they can be approximated by two-layer
neural networks up to a discretisation error.

4.2 Barron’s space

As motivated above, Barron’s construction exploits the regularity of the target function, and relies on
its Fourier decomposition. Recall that any integrable function g ∈ L1(Rd) admits a Fourier decompo-
sition:

g(x) =

∫
Rd

dξ ĝ(ξ)ei〈ξ,x〉 (4.7)

14

where ĝ ∈ L1(Rd) are the Fourier coefficients. Since this is invertible, we can also express ĝ in terms
of g:

ĝ(ξ) =

∫
Rd

dx

(2π)d
g(x)e−i〈ξ,x〉 (4.8)

One of the useful properties of the Fourier transform is that it linearise gradients. Assuming g is
differentiable:

∇g(x) =

∫
Rd

dξ ĝ(ξ)ei〈ξ,x〉iξ ⇔ ∇̂g(ξ) = iξ ĝ(ξ) (4.9)

This property provides a useful way of measuring the regularity of g. Indeed, in order for this expression
to be mathematically well-defined, we need that ∇̂g ∈ L1(Rd), which means that the coefficients |ĝ(ξ)|
must decay faster than ||ξ||2. More generally, if all derivatives of g up to order m ∈ N are integrable,
we must have:

|ĝ(ξ)| ≤ C||ξ||−m, as ||ξ||2 →∞ (4.10)

Therefore, from the point of view of the Fourier transform differentiable functions are functions for
which the Fourier coefficients decay faster than polynomials. From the FTC argument in eq. (4.1), it
will not be surprising that having a finite gradient norm is exactly what we need to write a function
in terms of an infinite width two-layer neural network.

Definition 2 (Barron space). Let f ∈ L1(Rd) denote an integrable function. We define its Barron
norm as:

||f ||B :=

∫
Rd
||ξ|| · |f̂(ξ)|dξ =

∫
Rd
||∇̂f(ξ)||dξ (4.11)

The Barron space FB ⊂ L1(Rd) is then defined as the space of integrable functions with finite Barron
norm:

FB := {f ∈ L1(Rd) : ||f ||B <∞} (4.12)

4! Note that since the Barron norm || · ||B is defined through the derivative of the function, it is

strictly speaking not a norm but a semi-norm. Indeed, two distinct functions f, g ∈ L1(Rd) can have
the same Barron norm ||f ||B = ||g||B without being identical f(x) 6= g(x) at all x ∈ Rd, as long as
f(0) 6= g(0). For FB to define a proper Banach space, we need to fix f(0).

Example 2. To get some intuition, it is useful to look at the Barron norm of some well-known
functions.

• Gaussian: For g(x) = e−1/2||x||22 with x ∈ Rd, we have ||g||B = O(
√
d). You will show this in

exercise 6.

• Single neuron: Let g(x) = 〈w,x〉 + b with w ∈ Rd, b ∈ R and σ : R → R. This is a
single-neuron of a neural network, also known as ridge function. We have:

||g||B ≤ ||w||
∫
R
|ξσ̂(ξ)|dξ (4.13)

• See Section IX of (Barron, 1993) for a big list of examples.

4! The ReLU activation σ(x) = x+ has infinite Barron norm - see exercise 6.

Remark 9. All the notions in this section can be similarly defined to functional spaces over a prob-
ability density µ over Rd.

15

4.3 Barron’s theorem

We are now ready to state Barron’s theorem for two-layer neural networks.

Theorem 5 (Barron (1993)). Let px be a probability distribution with supp(px) ⊂ B(0, R). Then, for
any integrable function g ∈ L1(px), there exists a two-layer neural network fθ ∈ Fσ,d,p with p neurons
and sigmoid-like activation σ such that:

||fθ − f(0)− g||L2(px) ≤
2R||g||B√

p
(4.14)

Furthermore, we can impose that the second-layer weights are bounded:
∑p

j=1 |aj | ≤ 2R||g||B

Remark 10. Two comments on this result are in order.

• Barron’s theorem can be alternatively stated as: for any g ∈ L1(px) and desired precision ε > 0,
there exists a two-layer neural network fθ ∈ Fσ,d,p with width:

p(ε) =

(
2R||g||B

ε

)2

(4.15)

such that ||fθ − f(0)− g||L2(px) ≤ ε.

• Note that the width is quadratic in the precision p = O(ε−2), which is much better than the
exponential dependence on the dimension of universal results based on grids, such as theorem 4.
This is often stated as a “dimension-free” result that “avoids the curse of dimensionality”.
However, it is important to keep in mind that ||g||B can potentially hide a dependence in d, such
as in example 2 for the Gaussian density where ||g||B = O(

√
d).

• Barron’s original theorem does not directly apply to the ReLU activation. A generalisation of
these ideas to ReLU is discussed in (Bach, 2017).

The proof of Barron’s theorem involve two steps, which we will discuss separately:

(a) Showing that any function g ∈ FB can be written as an infinite width two-layer neural network.

(b) Showing that an infinite width network can be approximated by a finite width network to the
desired precision ε > 0 with p(ε) as in eq. (4.15).

We start by discussing the first step.

Proposition 5. Let g ∈ FB. Then, for every x ∈ B(0, R), there exists a probability measure µ with
supp(µ) ⊂ Ω := [−M,M]× Rd+1 such that:

g(x)− g(0) =

∫
Ω
ϕ(x,θ)µ(dθ) (4.16)

with M := R||f ||B and ϕ(x,θ) = aσ(〈w,x〉+ b) a ridge function with sigmoid-like activation σ

Sketch of the proof. The key idea is to use the Fourier transform of g to write it in an integral form
that ressambles the infinite width limit of a two-layer network. Since g is real-valued, we can write:

g(x)− g(0) = Re

[∫
Rd
ĝ(ξ)

(
ei〈ξ,x〉 − 1

)
dξ

]
(a)
= Re

[∫
Rd
|ĝ(ξ)|eiα(ξ)

(
ei〈ξ,x〉 − 1

)
dξ

]
=

∫
Rd
|ĝ(ξ)| [cos (〈ξ,x〉+ α(ξ))− cos (α(ξ))] dξ (4.17)

16

where in (a) we used the polar decomposition of ĝ. Note that this looks exactly like the infinite width of
a neural network with cosine activation. However, this differs from the desired result in two important
ways: the integral is over the Lebesgue measure and the second layer weights are unbounded. To fix
these points, we rewrite:

g(x)− g(0) =

∫
Rd

||g||B
||ξ||2

[cos (〈ξ,x〉+ α(ξ))− cos (α(ξ))]
||ξ||2 · |ĝ(ξ)|
||g||B

dξ

=

∫
Rd
ϕ(x, ξ)µ(dξ) (4.18)

where we have defined:

ϕ(x, ξ) =
||g||B
||ξ||2

[cos (〈ξ,x〉+ α(ξ))− cos (α(ξ))] , µ(dξ) :=
||ξ||2 · |ĝ(ξ)|
||g||B

dξ (4.19)

In particular, note that ϕ is bounded. Indeed, since cos is 1-Lipschitz:

| cos (〈ξ,x〉+ α(ξ))− cos (α(ξ)) | ≤ |〈ξ,x〉| ≤ ||x||2 · ||ξ||2 (4.20)

where in the last inequality we used Cauchy-Schwarz. Hence:

|ϕ(x, ξ)| ≤ ||g||B · ||x||2 ≤ R||g||B (4.21)

since x ∈ B(0, R). Moreover, µ is a probability measure over Rd since:∫
Rd
µ(dξ) =

1

||g||B

∫
Rd
||ξ||2 · |ĝ(ξ)|dξ =

||g||B
||g||B

= 1 (4.22)

This almost concludes the proof. It remains just to show that for each ξ ∈ Rd, ϕ(·, ξ) in eq. (4.19)
can be approximated by a sum of sigmoid-like functions which is a consequence of proposition 3.

Step (b) in the proof of theorem 5 uses a classical proof scheme in probability: to create an
approximation for g by sampling a finite width network from the measure defined in proposition 5.

Proof of Barron’s theorem. . Let g ∈ FB, and without loss of generality assume g(0) = 0. Then, by
proposition 5 there exists a probability measure µ with supp(µ) ⊂ Ω such that:

g(x) = Eθ∼µ[ϕ(x,θ)] (4.23)

with ϕ(x,θ) = aσ(〈w,x〉+ b). We now consider p independent samples θ1, · · · ,θp ∼ µ, and let:

f(x; Θ) =
1

p

p∑
j=1

ϕ(x,θj) (4.24)

denote a random estimate of g. Note that by construction we have f(·; Θ) ∈ Fσ,d,p. In particular,
since θj are independent we have:

Eθ1,··· ,θp∼µ[f(x; Θ)] = g(x) (4.25)

and by the law of large numbers, f(·; Θ) → g almost surely as p → ∞. The desired approximation
error therefore corresponds exactly to this estimation error:

Eθ1,··· ,θp∼µ||f(·; Θ)− g||2L2(px) = Eθ1,··· ,θp∼µ||f(·; Θ)||2L2(px) − ||g||
2
L2(px) (4.26)

17

Focusing on the first terms, note that we have:

||f(·; Θ)||2L2(px) =
∣∣∣∣∣∣1
p

p∑
j=1

ϕ(·;θj)
∣∣∣∣∣∣2
L2(px)

=
1

p2

p∑
j,k=1

〈ϕ(·;θj), ϕ(·;θk)〉L2(px)

=
1

p2

p∑
j=1

||ϕ(·;θj)||2L2(px) +
1

p2

∑
j 6=k
〈ϕ(·;θj), ϕ(·;θk)〉L2(px) (4.27)

Now, taking the expectation with respect to θ1, · · · ,θp ∼ µ and using independence:

Eθ1,··· ,θp∼µ||f(·; Θ)||2L2(px) =
1

p
Eθ∼µ

[
||ϕ(·;θ)||2L2(px)

]
+

(
1− 1

p

)
||g||L2(px) (4.28)

Inserting this back into eq. (4.26):

Eθ1,··· ,θp∼µ||f(·; Θ)− g||2L2(px) =
Eθ∼µ||ϕ(·,θ)||2L2(px) − ||g||

2
L2(px)

p
≤

Eθ∼µ||ϕ(·,θ)||2L2(px)

p
(4.29)

Which is exactly the desired rate in the width. To conclude the proof, we just need to remark that
since supp(µ) ⊂ Ω and supp(px) ⊂ B(0, R):

Eθ∼µ||ϕ(·,θ)||2L2(px) ≤ ||ϕ||
2
L2(B(0,R)×Ω) ≤ ||ϕ||

2
L∞(B(0,R)×Ω) ≤ R

2||g||2B · ||σ||2L∞(R) (4.30)

where in the last inequality we used that:

|ϕ(x,θ)| = |a| · |σ(〈w,x+ b)| ≤M ||σ||L∞(R) = R||g||B (4.31)

Since for sigmoid-like function we have ||σ||L∞(R) = 1. Therefore, since the expectation over θ1, . . . ,θp ∼
µ is finite, the probability of the event that f(·,Θ) satisfies the estimation error:

||f(·; Θ)− g||L2(px) ≤
R||g||B√

p
(4.32)

is finite, which concludes the proof.

To go further

In these lectures, we have seen that sufficiently wide two-layer neural networks with sigmoid-like
activation are able to approximate well-behaved function in a compact set. We have discussed both
uniform for a broad function class (continuous function) - which are strong, but come at a cost of
an exponential dependence of the network width on the data dimension - and L2 results for regular
functions (Barron functions) - which are weaker but for which the width adapts to the regularity of
the function.

These results date back from the 90’s, and there are modern extensions in many directions, some
of which we have already referred to. One exciting set of more recent results concern depth separation.
While two-layer networks are universal approximations, they are barely used outside the scope of
theoretical works, and as the name emphasises, deep learning is really about deep networks. Therefore,
provably showing that deep networks have better approximation properties than shallow networks is
an important endeavour. To wrap up our discussion about approximation theory with neural networks,
we mention of such result, hoping it will motivate the reader to go deeper

18

Theorem 6 (Telgarsky (2015, 2016)). Let L > 1. There exists g : R → R computed by a neural
network with ReLU activations with 2L2 +4 layers and p = 3L3 +12 nodes but such that any network
f with ≤ L layers and ≤ 2L nodes cannot approximate it:

||f − g||L1([0,1]) ≥
1

32
(4.33)

Remark 11. While positive results are strong in the strongest norm (L∞, uniform), negative results
such as this one are strongest in the weakest norm (L1). This shows the network f badly fails to
approximate g.

5 Exercises

Exercise 1. Let µ denote a probability measure over Rd. Show that the Lp(µ) norm:

||f ||Lp(µ) :=

(∫
µ(dx)|f(x)|p

)1/p

(5.1)

is an increasing function of p ∈ [1,∞]:

||f ||L∞(µ) ≥ · · · ≥ ||f ||L2(µ) ≥ ||f ||L1(µ) (5.2)

where we recall ||f ||L∞(µ) = supx∈supp(µ) |f(x)|. Conclude that we have the inclusion:

L∞(µ) ⊂ · · · ⊂ L2(µ) ⊂ L1(µ) (5.3)

Exercise 2. Let µ denote a probability measure in R and [a, b] ⊂ R a compact subset of your choice.
Give examples of functions f, g : R→ R such that:

||f ||L∞(µ) ≤ ||f ||L∞([a,b]), and ||g||L∞(µ) ≥ ||g||L∞([a,b]) (5.4)

Note: In the above, we want [a, b] and µ to be the same in both inequalities.

Exercise 3. Consider the following continuous function on R:

g(x) =


0 x < −1/2

x+ 1/2 x ∈ [−1/2, 1/2]

1 x > 1/2

(5.5)

How many neurons p are needed to approximate g within a precision ε > 0 on the compact set
[−1, 1] ⊂ R using the two-layer neural network with step-size activation from Proposition 2 in the
lectures? Show that we could do as well by using fewer neurons if we adapt the partition to the
function.

Exercise 4. Show that:

inf
fθ∈Frelu,1

sup
x∈R
|fθ(x)− sin(x)| ≥ 1 (5.6)

where Frelu,1, the class of two-layer neural networks over R with relu activation and unbounded width,
is was defined in eq. (3.3). Conclude that the compactness assumption in definition 1 is crucial to
define meaningful approximation results.

Exercise 5. By following the same steps as in the proof of lemma 1, prove that that Fexp,d are
universal approximators over [0, 1]d

19

Exercise 6. (a) Consider a Gaussian density with variance σ2:

f(x) =
1

(2πσ2)d/2
e−

1
2σ2
||x||22 (5.7)

Show that its Barron norm is given by:

||f ||B =
1√
π

Γ(d+1
2)

Γ(d2)

1

(2πσ2)
d+1
2

(5.8)

Conclude that for σ2 ≥ 1, we have ||f ||B = O(
√
d) as d→∞. What happens for σ2 < 1?

(b) Show that for the ridge function f(x) = σ(〈w,x+ b) the Barron norm is bounded by:

||f ||B ≤ ||w||2
∫
R
|ξσ̂(ξ)|dξ. (5.9)

Conclude that the ridge function with sigmoid-like activation are in FB, but not with ReLU
activation σ(x) = x+.

References

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18(19):1–53, 2017.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

David L Donoho et al. High-dimensional data analysis: The curses and blessings of dimensionality.
AMS math challenges lecture, 1(2000):32, 2000.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–
867, 1993.

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of
Machine Learning Research, pages 1517–1539, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR. URL https://proceedings.mlr.press/v49/telgarsky16.html.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

20

https://proceedings.mlr.press/v49/telgarsky16.html

	The curse of dimensionality
	k-Nearest neighbours
	Grids in high-dimensions
	The empirical covariance is not reliable
	Blessings of dimensionality

	Universal approximation of neural networks
	Motivation & Introduction
	Introduction to approximation theory

	Neural networks
	Uniform results on R
	Uniform results on Rd

	Quantitative L2 results
	Infinite width limit of two-layer networks
	Barron's space
	Barron's theorem

	Exercises

